Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10
= (x+2y)^2 - 2(x+2y) +10
= 5^2 - 2x5 +10
= 25
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R
Giúp mik với T_T
a) vì x = -2
A = 4y -1
B = -1 - 2y
A.B= 0 \(\Leftrightarrow\)(4y-1) . ( (-2y-1) = 0
\(\Leftrightarrow\orbr{\begin{cases}4y-1=0\\-2y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}}\)
b) Vì x = 2y nên
A = 6y + 4y + 5 = 10y +5
B = 4.2y - 2y +7 = 6y+7
A.B=0 \(\Leftrightarrow\left(10y+5\right).\left(6y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-7}{6}\end{cases}}\)
Với y= - 1/2 \(\Leftrightarrow\)x= -1
Với y = -7/6 \(\Leftrightarrow\)x=-7/3