Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
giống Nguyễn Lê Phước Thịnh nhé
\(\frac{x^2+3x-1}{2-x}+x>0\Leftrightarrow\frac{5x-1}{2-x}>0\Rightarrow\frac{1}{5}< x< 2\)
\(\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x=-2\\1\le x< 2\\2< x< 7\end{matrix}\right.\)
Kết hợp lại ta có: \(1\le x< 2\)
Tử và mẫu lớn hơn không với mọi x
=> BpT tương đương \(!x^2-4x!+3\ge x^2+!x-5!\\ \) (1)
chia khoảng: các điểm tới hạn x={0,4,5}
TH1: \(\left(I\right)x\le0\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (I)=>\(x\le-\frac{2}{3}\) là nghiệm.
TH2: \(\left(II\right)0< x< 4\)
(1) \(\Leftrightarrow-x^2+4x+3\ge x^2+5-x\Leftrightarrow2x^2-5x+2\le0\Rightarrow\frac{1}{2}\le x\le2\)
Kết hợp (II) \(\frac{1}{2}\le x\le2\) là nghiệm
TH3:(III) \(4\le x< 5\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (iii) loại
TH4: x>=5
\(\Leftrightarrow x^2-4x+3\ge x^2+x-5\Leftrightarrow-5x\ge-8\Rightarrow x\le\frac{8}{5}\) loại
Kết luận:
\(\left[\begin{matrix}x\le-\frac{2}{3}\\\frac{1}{2}\le x\le2\end{matrix}\right.\)