K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

a: Xét ΔBEC có 

M là trung điểm của BC

MF//BE

Do đó: F là trung điểm của CE

Suy ra: FE=CF(1)

Xét ΔAMF có 

I là trung điểm của AM

IE//MF

Do đó: E là trung điểm của AF

Suy ra: AE=EF(2)

Từ (1) và (2) suy ra AE=FE=CF

Trên tia đối của tia ME vẽ điểm H sao cho ME = MH.

Xét tam giác AME, có:
* I là trung điểm của AM (gt)
* ID // ME ( BD // ME)
=> ID là đường trung bình của tam giác AME
=> ID = 1/2 ME (1)

Xét tam giác MEC và tam giác MHB, có:
* ME = MH (theo cách vẽ)
* góc EMC = góc HMB (đối đỉnh)
* CM = BM (AM là trung tuyến)
=> tam giác MEC = tam giác MHB (c.g.c)
=> góc ECM = góc HBM (yếu tố tương ứng)
Mà góc ECM và góc HBM ở vị trí so le trong
Nên BH // AC

Xét tam giác BHE và tam giác EDB, có:
* góc HBE = góc DEB ( BH // AC ; so le trong)
* BE là cạnh chung
* góc HEB = góc DBE ( BD // HE ; so le trong)
=> tam giác BHE = tam giác EDB (g.c.g)
=> BD = HE (yếu tố tương ứng)

Ta có: HE = BD (cmt)
          MH = ME (theo cách vẽ)
Mà HE = MH + ME
Nên BD = 2ME
       18 = 2ME
       ME = 18 : 2
       ME = 9 (cm) (2)

Từ (1) và (2) => ID = ME : 2 = 9 : 2 = 4.5 (cm)

17 tháng 9 2016

kick nha ban minh se kick lai

31 tháng 7 2017

Nhớ vẽ hình dùm mình nha

22 tháng 11 2023

loading...  loading...  

25 tháng 6 2017

ko bt 

ai ko pc dống mik thì kb và tk cho mik nha

10 tháng 9 2017

trả lời đc câu hỏi thì mày muốn k bn thì tao k cho còn k thì đừng có hòng con nhỏ ngu

2 tháng 7 2016

ta có

MB=MC(M trung điểm BC)

ME//BD

=> ME=1/2.BD=1/2.18=9

ta lại có :

AI=IM( I trung điểm AM)

ID//ME 

=> ID=1/2.ME =1/2.9=4,5 

Chúc bạn học tốt . Nhớ chọn mình nha !!! Cảm ơn

12 tháng 12 2023

Sửa đề: cắt BA,BC lần lượt tại P và Q

Xét ΔABI có PM//BI

nên \(\dfrac{PM}{BI}=\dfrac{AM}{AI}\)

=>\(PM=BI\cdot\dfrac{AM}{AI}\)

Xét ΔMQC có BI//QM

nên \(\dfrac{BI}{QM}=\dfrac{CI}{CM}\)

=>\(QM=BI\cdot\dfrac{CM}{CI}\)

\(MP+MQ\)

\(=BI\cdot\left(\dfrac{CM}{CI}+\dfrac{AM}{AI}\right)\)

\(=BI\cdot\left(\dfrac{CI+IM}{CI}+\dfrac{AM}{CI}\right)\)

\(=BI\cdot\left(1+\dfrac{IM}{CI}+\dfrac{AM}{CI}\right)\)

\(=BI\cdot\left(1+\dfrac{IM+AM}{CI}\right)\)

\(=BI\left(1+\dfrac{AI}{CI}\right)=2BI\)