Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
1.ta có: 7x-2x^2=-2(x^2-7/2x)
=-2(x^2-2*7/4x+49/16-49/16)
=-2(x-7/4)^2+49/8 <=49/8
Dấu bằng xáy ra <=> x=7/4
Vậy max=49/8 <=> x=7/4
\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)
\(Mmin=1\) khi x+2 = 0 => x = -2
M=x2 +4x +5
=>M=x(x+4)+5
Ta có:
x(x+4) lớn hơn hoặc bằng 0
=>x(x+4)+5 lớn hơn hoặc bằng 5
=>M lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4
Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4