K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

\(\widehat{EAC}\) chung

Do đó: ΔAEC đồng dạng với ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AD\cdot AC\)

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

DO đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EAH}\)

=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét tứ giác HDCM có

\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)

=>HDCM là tứ giác nội tiếp

=>\(\widehat{HDM}=\widehat{HCM}\)

=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)

=>DB là phân giác của \(\widehat{EDM}\)

1 tháng 4 2019

H A B C D E O F

a) Xét tam giác AEC và tam giác ADB

có:

\(\widehat{AEC}=\widehat{ADB}=90^o\)

\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)

=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)

b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A 

=> A là trực tâm tam giác ACB

=> HA vuông BC

=> AF vuông BC

Xét tứ giác BFEH có:

\(\widehat{BFH}=\widehat{HEB}=90^o\)

=> BFEH nội tiếp

c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)

Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)

=> ADBF nội tiếp 

=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)

Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)

=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)

=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)

=> Tứ giác DEOF nội tiếp

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn 

29 tháng 4 2018

b cm đê

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0