K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra MO⊥AB

8 tháng 12 2021

đã ghi rõ là giúp mình câu b mà sao tự nhiên..... 

10 tháng 12 2021

a: Xét (O) có 

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

30 tháng 5 2021

Mọi người giúp mình với mình đang cần gấp mình cảm ơn nhiều ạ

a) undefined

b) \(tanOAB=\dfrac{OB}{OA}=\dfrac{5}{\dfrac{5}{3}}=3\Rightarrow\widehat{OAB}=71^o34'\)

21 tháng 7 2021

Ta coi hình vẽ là tam giác ABC vuông tại A với B là đỉnh ngọn đèn

góc BCA=30o(2 góc so le trong)

Theo tỉ số lượng giác trong tam giác vuông ta có:

CA=AB : tanC30

CA=35:tan30=60,6(m)

Vậy khoảng cách từ chân đèn đến hòn đảo là 60,6m

 

 

NV
23 tháng 7 2021

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=7\)

\(\Leftrightarrow\left|x-2\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-4x+4}-5=2\)

\(\Leftrightarrow\left|x-2\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

a: Ta có: \(A=\sqrt{4-\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

\(=2>\sqrt{3}\)

b) Đặt (d3): y=ax+b

Vì (d3)//(d1) nên \(a=-\dfrac{2}{3}\)

Vậy: (d3): \(y=\dfrac{-2}{3}x+b\)

Thay x=6 vào (d2), ta được:

\(y=-2\cdot6+4=-12+4=-8\)

Thay x=6 và y=-8 vào (d3), ta được:

\(\dfrac{-2}{3}\cdot6+b=-8\)

\(\Leftrightarrow b=-4\)

Vậy: (d3): \(y=\dfrac{-2}{3}x-4\)

23 tháng 7 2021

Thanks bạn nhìu nha hay giúp mình 

 

a) Ta có: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}\)

\(=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}\)

\(=2\sqrt{5}\)

b) Ta có: \(\left(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}+2\right)\left(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-2\right)\)

\(=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)

=1

c) Ta có: \(\dfrac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\dfrac{5}{\sqrt{7}+\sqrt{2}}\)

\(=\sqrt{7}+\sqrt{2}-\sqrt{7}+\sqrt{2}\)

\(=2\sqrt{2}\)