K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Mình ko chắc nha

S=(1+1/2.4)+(1+1/3.5)+(1+4.6)+...+(1+1/49.51)

S=(1+1/8)+(1+1/15)+(1+1/24)+...+(1+1/2499)

S=9/8 + 16/15 + 25/24 + ... + 2500/2499

S=3.3/2.4 + 4.4/3.5 + 5.5/4.6 + ... + 50.50/49.51

Rồi gộp lại

S=3.4.5...50(số thứ nhất của tử ở mỗi phân số)/2.3.4...49(số thứ nhất của mẫu ở mỗi phân số)+3.4.5...50(số thứ hai còn lại ở tử)/4.5.6...51(số thứ hai còn lại của mẫu)

Mình ghi rõ cho dễ nhìn hen

S=3.4.5...50/2.3.4....49+3.4.5...50/4.5.6...51

Loại bỏ các ở ở tử giống mẫu của mỗi phân số

S=50/2+3/51

S=25+3/51

Tự xử

Một lần nữa là mình ko chắc nhá

8 tháng 3 2020

\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

8 tháng 3 2020

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)

A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)

25 tháng 6 2019

\(D=2.4+4.6+...+98.100\)

\(\Rightarrow6D=2.4.6+4.6.6+...+98.100.6\)

\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)

\(=2.4.6-2.4.6+4.6.8+...+98.100.102-96.98.100\)

\(=98.100.102\)

\(=999600\)

\(\Rightarrow D=\frac{999600}{6}=166600\)

\(D=2.4+4.6+...+98.100\)

\(6D=2.4.6+4.6.6+...+98.100.6\)

\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)

\(=2.4.6-2.4.6+4.6.8+...+98.100.102\)

\(=98.100.102\)

\(6D=999600\)

\(D=999600:6\)

\(D=166600\)

3 tháng 10 2020

em đang học lớp 5 ạ

3 tháng 10 2020

e lớp 5 thì e đừng có lm!

3 tháng 7 2017

\(A=\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{48\cdot50}\)---> Mik nghĩ bn ghi nhầm :]

\(A=\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\right]\)

\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\right]\)

\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{50}\right]=\frac{3}{2}\cdot\frac{12}{25}=\frac{18}{25}\)

Vậy A = 18/25

\(B=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{49\cdot51}\)

\(B=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\right]\)

\(B=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right]\)

\(B=\frac{5}{2}\left[1-\frac{1}{51}\right]=\frac{5}{2}\cdot\frac{50}{51}=\frac{125}{51}\)

3 tháng 7 2017

Mik ghi đúng mà

Huhu ai giúp mik với

Nhanh mik