Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko chắc nha
S=(1+1/2.4)+(1+1/3.5)+(1+4.6)+...+(1+1/49.51)
S=(1+1/8)+(1+1/15)+(1+1/24)+...+(1+1/2499)
S=9/8 + 16/15 + 25/24 + ... + 2500/2499
S=3.3/2.4 + 4.4/3.5 + 5.5/4.6 + ... + 50.50/49.51
Rồi gộp lại
S=3.4.5...50(số thứ nhất của tử ở mỗi phân số)/2.3.4...49(số thứ nhất của mẫu ở mỗi phân số)+3.4.5...50(số thứ hai còn lại ở tử)/4.5.6...51(số thứ hai còn lại của mẫu)
Mình ghi rõ cho dễ nhìn hen
S=3.4.5...50/2.3.4....49+3.4.5...50/4.5.6...51
Loại bỏ các ở ở tử giống mẫu của mỗi phân số
S=50/2+3/51
S=25+3/51
Tự xử
Một lần nữa là mình ko chắc nhá
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)
\(D=2.4+4.6+...+98.100\)
\(\Rightarrow6D=2.4.6+4.6.6+...+98.100.6\)
\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)
\(=2.4.6-2.4.6+4.6.8+...+98.100.102-96.98.100\)
\(=98.100.102\)
\(=999600\)
\(\Rightarrow D=\frac{999600}{6}=166600\)
\(D=2.4+4.6+...+98.100\)
\(6D=2.4.6+4.6.6+...+98.100.6\)
\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)
\(=2.4.6-2.4.6+4.6.8+...+98.100.102\)
\(=98.100.102\)
\(6D=999600\)
\(D=999600:6\)
\(D=166600\)
\(A=\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{48\cdot50}\)---> Mik nghĩ bn ghi nhầm :]
\(A=\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{50}\right]=\frac{3}{2}\cdot\frac{12}{25}=\frac{18}{25}\)
Vậy A = 18/25
\(B=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{49\cdot51}\)
\(B=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\right]\)
\(B=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right]\)
\(B=\frac{5}{2}\left[1-\frac{1}{51}\right]=\frac{5}{2}\cdot\frac{50}{51}=\frac{125}{51}\)