Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)
A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)
A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)
A=\(\dfrac{7}{24}\)
B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)
B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)
B=\(1+\left(-1\right)+\left(-1\right)=-1\)
C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)
C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)
D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)
D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
\(A=\dfrac{1}{3}\cdot\dfrac{4}{5}+\dfrac{1}{3}\cdot\dfrac{6}{5}+\dfrac{2}{3}\\ =\dfrac{1}{3}\cdot\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\\ =\dfrac{1\cdot2}{3}+\dfrac{2}{3}\\ =\dfrac{2}{3}+\dfrac{2}{3}\\ =\dfrac{4}{3}\)
B =\(\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}\)-\(\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\left[\dfrac{-5}{6}+\dfrac{-7}{12}\right]-\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\left[\dfrac{-10}{12}+\dfrac{-7}{12}\right]-\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)
=\(\dfrac{-17}{57}\)-\(\dfrac{40}{57}\)
=\(\dfrac{-17}{57}+\dfrac{-40}{57}\)
=\(\dfrac{-57}{57}=-1\)
a) \(\dfrac{11}{21}+\dfrac{-4}{7}=\dfrac{11}{21}+\dfrac{-12}{21}=\dfrac{-1}{21}\)
b) \(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}=\dfrac{1}{3}+\dfrac{14}{25}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\left(\dfrac{14}{25}+\dfrac{11}{25}\right)+\dfrac{2}{7}=-1+1+\dfrac{2}{7}=\dfrac{2}{7}\)
c) \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{14}=\dfrac{28}{42}+\dfrac{30}{42}-\dfrac{9}{42}=\dfrac{49}{42}=\dfrac{7}{6}\)
d) \(\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{9}{45}=\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{1}{5}=\dfrac{14}{35}-\dfrac{15}{35}+\dfrac{7}{35}=\dfrac{6}{35}\)
e) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{45}{5}=\dfrac{21}{47}+\dfrac{1}{5}+\dfrac{26}{47}+\dfrac{45}{5}=\left(\dfrac{21}{47}+\dfrac{26}{47}\right)+\left(\dfrac{1}{5}+\dfrac{45}{5}\right)\)
\(=1+\dfrac{46}{5}=\dfrac{51}{5}\)
f) \(\dfrac{15}{12}-\dfrac{18}{13}+\dfrac{5}{13}-\dfrac{3}{12}=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(-\dfrac{18}{13}+\dfrac{5}{13}\right)=1+\left(-1\right)=0\)
g) \(\dfrac{-8}{18}-\dfrac{15}{27}=\dfrac{-4}{9}-\dfrac{5}{9}=\dfrac{-9}{9}=-1\)
h)\(\dfrac{3}{7}+\dfrac{-5}{2}-\dfrac{3}{5}=\dfrac{30}{70}+\dfrac{-175}{70}-\dfrac{42}{70}=\dfrac{-187}{70}\)
i) \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{11.16.3}{12.33.5}=\dfrac{4}{15}\)
a,\(\dfrac{3}{7}\).\(\dfrac{14}{5}\)=\(\dfrac{6}{5}\)
b,\(\dfrac{35}{9}\).\(\dfrac{81}{7}\)=45
c,\(\dfrac{28}{17}\).\(\dfrac{68}{14}\)=8
d,\(\dfrac{35}{46}\).\(\dfrac{23}{105}\)=\(\dfrac{1}{6}\)
e,\(\dfrac{12}{5}\):\(\dfrac{16}{15}\)=\(\dfrac{12}{5}\).\(\dfrac{15}{16}\)=\(\dfrac{9}{4}\)
i,\(\dfrac{9}{8}\):\(\dfrac{6}{5}\)=\(\dfrac{9}{8}\).\(\dfrac{5}{6}\)=\(\dfrac{15}{16}\)
a: \(\Leftrightarrow70+18< x< 120+126+70\)
=>88<x<316
hay \(x\in\left\{89;90;...;315\right\}\)
b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)
=>-3<x<3,4
hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)
\(a,\dfrac{7}{35},\dfrac{18}{54},\dfrac{-15}{125},\dfrac{-4}{25}\)
Các thừa số đã tối giản : \(\dfrac{-4}{25}\)
\(\dfrac{7}{35}=\dfrac{7:7}{35:7}=\dfrac{1}{5}\) , \(\dfrac{18}{54}=\dfrac{18:18}{54:18}=\dfrac{1}{3}\)
\(\dfrac{-15}{125}=\dfrac{-15:5}{125:5}=\dfrac{-3}{25}\)
\(b,\dfrac{27}{45},\dfrac{21}{28},\dfrac{8}{14},\dfrac{18}{-60},\dfrac{-270}{360}\)
Các thừa số đã tối giản là : ko có
\(\dfrac{27}{45}=\dfrac{27:9}{45:9}=\dfrac{3}{5}\) , \(\dfrac{21}{28}=\dfrac{21:7}{28:7}=\dfrac{3}{4}\)
\(\dfrac{8}{14}\)\(=\dfrac{8:2}{14:2}=\dfrac{4}{7}\) , \(\dfrac{18}{-60}=\dfrac{18:6}{-60:6}=\dfrac{3}{-10}=\dfrac{-3}{10}\)
\(\dfrac{-270}{360}=\dfrac{-270:90}{360:90}=\dfrac{-3}{4}\)
\(c,\dfrac{3.4+3.7}{6.5+9}\) = \(\dfrac{3.\left(4+7\right)}{30+9}\) = \(\dfrac{3.11}{39}\) = \(\dfrac{3.11}{3.13}=\dfrac{11}{13}\)
\(\dfrac{-63}{81},\dfrac{9.6}{9.35},\dfrac{7.2+8}{2.14.5}\)
Các p/s đã tối giản : ko có
\(\dfrac{-63}{81}=\dfrac{-63:9}{81:9}=\dfrac{-7}{9}\) , \(\dfrac{9.6}{9.35}=\dfrac{6}{35}\)
\(\dfrac{7.2+8}{2.14.5}=\dfrac{14+8}{28.5}=\dfrac{22}{140}=\dfrac{11}{70}\)
Lời giải:
$(\frac{2023a}{2024c})^3=(\frac{2024b}{2025a})^3=(\frac{2025c}{2023b})^3=\frac{2023a}{2024b}.\frac{2024b}{2025a}.\frac{2025c}{2023b}=1$
$\Rightarrow \frac{2023a}{2024c}=\frac{2024b}{2025a}=\frac{2025c}{2023b}=1$
$\Rightarrow 2023a=2024c; 2024b=2025a; 2025c=2023b$
Do đó:
$\frac{2023a}{506c}+\frac{2024b}{675a}+\frac{2025c}{289b}=\frac{2024c}{506c}+\frac{2025a}{675a}+\frac{2023b}{289b}$
$=4+3+7=14$