Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{CHB}=90^0\)
=>ΔCHB vuông tại H
=>ΔCHB nội tiếp đường tròn đường kính CB(4)
Ta có: \(\widehat{CKB}=90^0\)
=>ΔCKB vuông tại K
=>ΔCKB nội tiếp đường tròn đường kính CB(5)
Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)
\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)
Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)
Ta có: CHBK là tứ giác nội tiếp
=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)
Xét ΔOAC có OC=OA
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)(3)
Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//AC
Xét tứ giác CHBK có
\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)
=>CHBK là tứ giác nội tiếp
=>C,H,B,K cùng thuộc một đường tròn
a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
BC là đường kính của (O)(gt)
Do đó: ΔABC vuông tại A(Định lí)
Ta có: BC=BH+HC(H nằm giữa B và C)
mà BH=9cm(gt)
và CH=16cm(gt)
nên BC=9+16=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=9\cdot25=225\)
hay AB=15(cm)
Vậy: Khi BH=9cm và CH=16cm thì AB=15cm
b) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{MFA}=90^0\)(MF⊥AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒MF=AE(Hai cạnh đối trong hình chữ nhật AEMF)
Ta có: EM⊥AB(gt)
AC⊥AB(gt)
Do đó: EM//AC(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
E∈AB(gt)
M∈BC(gt)
EM//AC(cmt)
Do đó: \(\dfrac{BE}{AE}=\dfrac{BM}{MC}\)(Định lí Ta lét)
⇒\(\dfrac{BE}{MF}=\dfrac{BM}{MC}\)
hay \(BE\cdot MC=BM\cdot MF\)(đpcm)
Gọi G là trung điểm của AM
Ta có: ΔAHM vuông tại M(AH⊥HM)
mà HG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)
nên \(HG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AG=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)
nên HG=AG=GM(1)
Ta có: ΔAEM vuông tại E(ME⊥AB tại E)
mà EG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)
nên \(EG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(GA=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)
nên EG=GA=GM(2)
Từ (1) và (2) suy ra GM=GA=GE=GH
hay A,E,H,M cùng thuộc một đường tròn(đpcm)