K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

NV
30 tháng 3 2021

7.

\(\sqrt{4-x}\ge0\Rightarrow\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\) đáp án D

8.

\(y=x^2+\dfrac{1}{2x}+\dfrac{1}{2x}\ge3\sqrt[3]{\dfrac{x^2}{4x^2}}=\dfrac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(x^2=\dfrac{1}{2x}\Leftrightarrow x=\dfrac{1}{\sqrt[3]{2}}\) đáp án D

9.

\(y\ge2\sqrt{\dfrac{2x}{x}}-\left(1+\sqrt{2}\right)^2=2\sqrt{2}-\left(3+2\sqrt{2}\right)=-3\) đáp án B

10.

\(y'=\dfrac{1-2x}{\left(x-2\right)^2\sqrt{x^2-1}}\Rightarrow\) hàm đồng biến trên \((-\infty;-1]\) và nghịch biến trên \(\left[1;\dfrac{3}{2}\right]\)

\(f\left(-1\right)=f\left(1\right)=0\) ; \(f\left(\dfrac{3}{2}\right)=-\sqrt{5}\)

\(\Rightarrow f\left(x\right)_{max}=0\) ; \(f\left(x\right)_{min}=-\sqrt{5}\) đáp án A

11.

\(f'\left(x\right)=\dfrac{5-x}{\left(x^2+2\right)\sqrt{x^2+5}}=0\Rightarrow x=5\) \(\Rightarrow f\left(5\right)=\dfrac{\sqrt{30}}{5}\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=1\) ; \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-1\)

Hàm đạt GTLN tại \(x=5\) và ko có GTNN, đáp án D

Chọn A

Chọn A

NV
23 tháng 4 2021

Xét \(I_1=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)cosxdx=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)d\left(sinx\right)\)

Đặt \(sinx=t\Rightarrow t\in\left[0;1\right]\Rightarrow f\left(t\right)=5-t\)

\(I_1=2\int\limits^1_0\left(5-t\right)dt=9\)

Xết \(I_2=3\int\limits^1_0f\left(3-2x\right)dx=-\dfrac{3}{2}\int\limits^1_0f\left(3-2x\right)d\left(3-2x\right)\)

Đặt \(3-2x=t\Rightarrow t\in\left[1;3\right]\Rightarrow f\left(t\right)=t^2+3\)

\(I_2=-\dfrac{3}{2}\int\limits^1_3\left(t^2+3\right)dt=\dfrac{3}{2}\int\limits^3_1\left(t^2+3\right)dt=22\)

\(\Rightarrow I=9+22=31\)

NV
20 tháng 9 2021

Đặt \(f\left(x\right)=\dfrac{1}{3}x^3-x^2+mx+1\Rightarrow f'\left(x\right)=x^2-2x+m\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}x^2-2x+m\ge0;\forall x\ge1\\f\left(1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m+\dfrac{1}{3}\ge0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

13 tháng 10 2021

1. Chọn B.

2. Chọn B.

3. Chọn D.

4. Chọn B.

5. Chọn D.

6. Chọn A.

7. Chọn D.

8. Chọn A.

9. Chọn D.

10. Chọn C.

11. Chọn A.

12.Chọn B.