Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)
Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)
Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)
\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)
Đến đây bạn có thể giải ra tìm x đc
b) Ta có: \(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(9x^2-1=0\)
\(\Leftrightarrow9x^2=1\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
x.(2x^2+5x-3)=0
x.(2x^2-x+6x-3)=0
x.(2x-1).(x+3)=0
-> x=0 hoặc x=-3 hoặc x=1/2
Lời giải:
a) Ta có:
\(3x^2-x+1=3(x^2-\frac{1}{3}x)+1\)
\(=3(x^2-\frac{1}{3}x+\frac{1}{36})+\frac{11}{12}\)
\(=3(x-\frac{1}{6})^2+\frac{11}{12}\). Vì \((x-\frac{1}{6})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow 3x^2-x+1=3(x-\frac{1}{6})^2+\frac{11}{12}\geq \frac{11}{12}>0, \forall x\in\mathbb{R}\)
Do đó BPT \(3x^2-x+1>0\) luôn đúng với mọi $x$ thực hay tập nghiệm của BPT là \(x=\mathbb{R}\)
b) \(2x^2-5x+4=2(x^2-\frac{5}{2}x)+4\)
\(=2(x^2-\frac{5}{2}x+\frac{25}{16})+\frac{7}{8}\)
\(=2(x-\frac{5}{4})^2+\frac{7}{8}\)
Vì \((x-\frac{5}{4})^2\geq 0, \forall x\in\mathbb{R}\) nên \(2x^2-5x+4\geq 2.0+\frac{7}{8}>0\) với mọi số thực $x$
Do đó BPT \(2x^2-4x+5< 0\) vô nghiệm.