Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
a) Vì 1-2n là Ư(3n+2)
\(\Rightarrow\)3n+2 \(⋮\) 1-2n
\(\Rightarrow\)-3n-2 \(⋮\) 2n-1
\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1
\(\Rightarrow\)6n+4 \(⋮\)2n-1
\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1
\(\Rightarrow\)7 \(⋮\) 2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(7)
Ta có:
Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
2n-1 | -1 | 1 | -7 | 7 |
n | 0 | 1 | -3 | 4 |
Vậy n \(\in\){0;1;-3;4}
b) 5n+1 \(⋮\)2n-3
\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3
\(\Leftrightarrow\)10n+2 \(⋮\)2n-3
\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3
\(\Leftrightarrow\)17 \(⋮\)2n-3
\(\Rightarrow\)2n-3 \(\in\)Ư(17)
Ta có:
Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}
Lập bảng:
2n-3 | -1 | 1 | -17 | 17 |
n | 1 | 2 | -7 | 10 |
Vậy n \(\in\){1;2;-7;10}