K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

ĐK : \(2x^4-8x^2+16=2\left(x^4-4x^2+8\right)=2\left(x^2-2\right)^2+8>0\)

\(\Leftrightarrow2x^4-8x^2+16=8\Leftrightarrow2x^4-8x^2+8=0\)

\(\Leftrightarrow x^4-4x^2+4=0\Leftrightarrow\left(x^2-2\right)^2=0\Leftrightarrow x=\pm2\)

14 tháng 11 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}1-4m=-\dfrac{1}{2}\\m-2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{8}\\m\ne5\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{8}\\ b,\Leftrightarrow1-4m>0\Leftrightarrow m< \dfrac{1}{4}\\ c,\Leftrightarrow x=\dfrac{1}{2};y=0\Leftrightarrow\dfrac{1}{2}\left(1-4m\right)=2-m\Leftrightarrow1-4m=4-2m\\ \Leftrightarrow m=-\dfrac{3}{2}\)

13 tháng 9 2023

\(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)

\(=\dfrac{3\left(2\sqrt{2}+3\sqrt{3}\right)}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}-\dfrac{3\left(2\sqrt{2}-3\sqrt{3}\right)}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}\)

\(=\dfrac{3\left(2\sqrt{2}+3\sqrt{3}-2\sqrt{2}+3\sqrt{3}\right)}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}\)

\(=\dfrac{3\cdot6\sqrt{3}}{\left(2\sqrt{2}\right)^2-\left(3\sqrt{3}\right)^2}\)

\(=\dfrac{18\sqrt{3}}{8-27}\)

\(=-\dfrac{18\sqrt{3}}{19}\)

#Toru

23 tháng 9 2021

Chữ đẹp quá bạn ơi, không hiểu gì hết 

23 tháng 9 2021

Đây để em gửi lại

a: Thay x=0 và y=5 vào (d), ta được:

(m-2)x0+m=5

=>m=5

c: Để hai đườg song song thì m-2=2

hay m=4

12 tháng 12 2021

Đề 1:

Bài 1:

\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)

Bài 2:

\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)

Bài 3:

\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

a: Xét (O) có AB là đường kính

nên \(sđ\stackrel\frown{AB}=180^0\)

\(sđ\stackrel\frown{DA}_{nhỏ}=sđ\stackrel\frown{AC}_{nhỏ}+sđ\stackrel\frown{CD}_{nhỏ}\)

\(=60^0+60^0=120^0\)

\(sđ\stackrel\frown{DA}_{lớn}=360^0-sđ\stackrel\frown{DA}_{nhỏ}=360^0-120^0=240^0\)

b:

\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}+sđ\stackrel\frown{BD}=60^0+60^0=120^0\)

Xét (O) có 

\(\widehat{TCB}\) là góc tạo bởi tiếp tuyến CT và dây cung CB

=>\(\widehat{TCB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CB}=\dfrac{1}{2}\cdot120^0=60^0\)

Xét (O) có

\(\widehat{TCD}\) là góc tạo bởi tiếp tuyến CT và dây cung CD
=>\(\widehat{TCD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CD}=\dfrac{1}{2}\cdot60^0=30^0\)

=>\(\widehat{TCD}=\dfrac{1}{2}\cdot\widehat{TCB}\)

=>CD là phân giác của góc BCT

 C NHA BN CÂU 45 KO LÀM ĐC