K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé

Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)

Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên 

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n - 21-15-5
n317-3

 

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

25 tháng 6 2017

Gọi biểu thức trên là A

Ta có

\(A=\frac{n^3-2n^2+3}{n-2}\)

\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)

Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)

Vậy ta có:

\(n-2=-3\\ \Rightarrow n=-1\)

\(n-2=-1\\ \Rightarrow n=1\)

\(n-2=1\\ \Rightarrow n=3\)

\(n-2=3\\ \Rightarrow n=5\)

14 tháng 12 2016

\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

\(\Rightarrow P\in Z\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)

\(\Rightarrow n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

13 tháng 12 2016

\(\frac{2n-1}{n-1}\in Z\)

\(\Rightarrow2n-1⋮n-1\)

\(\Rightarrow\left(2n-1\right)-\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow2⋮\left(n-1\right)\)

Bảng:

n-1-112-2
n023-1

 

Vậy \(n\in\left\{0;-1;2;3\right\}\)

 

19 tháng 2 2019

Bài 2

Ta có :

\(3y^2-12=0\)

\(3y^2=0+12\)

\(3y^2=12\)

\(y^2=12:3\)

\(y^2=4\)

\(\Rightarrow y=\pm2\)

b) \(\left|x+1\right|+2=0\)

\(\left|x+1\right|=0+2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

19 tháng 2 2019

\(N=\frac{3}{2x^2+6}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)

\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)

\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)