K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 4:

$M=[x^2-(a+b)x+ab]+[x^2-(b+c)x+bc]+[x^2-(a+c)x+ac]+x^2$

$=4x^2-2(a+b+c)x+ab+bc+ac$

$=4x^2-2.2x.x+ab+bc+ac=4x^2-4x^2+ab+bc+ac$

$=ab+bc+ac$

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 5:

Ta có:

$(x+y+z)^2=0^2=0$

$\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)=0$

$\Leftrightarrow x^2+y^2+z^2+0=0$

$\Leftrightarrow x^2+y^2+z^2=0$

Ta thấy: $x^2\geq 0; y^2\geq 0; z^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì:
$x^2=y^2=z^2=0$

$\Leftrightarrow x=y=z=0$ (đpcm)

16 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ta có: ADHE là hình chữ nhật

=>AH=DE(1)

Ta có: ΔAHM vuông tại H

=>AH<AM(2)

Từ (1) và (2) suy ra DE<AM

c: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nênMA=MC

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

Ta có: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{B}+\widehat{C}=90^0\)

=>DE\(\perp\)AM

d:Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến ứng với cạnh BC

=>H trùng với M

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là phân giác của góc DAE

Xét hình chữ nhật ADHE có AH là phân giác của góc DAE

nên ADHE là hình vuông

=>Chu vi là \(C=3\cdot4=12cm\) và diện tích \(S=3^2=9\left(cm^2\right)\)

28 tháng 9 2023

a) \(\dfrac{A}{x-3}=\dfrac{y-x}{3-x}\left(Đk:x\ne3\right)\)

\(A=\dfrac{\left(x-3\right)\left(y-x\right)}{3-x}=x-y\)

b) \(\dfrac{5x}{x+1}=\dfrac{Ax\left(x-1\right)}{\left(1-x\right)\left(x+1\right)}\left(Đk:x\ne\pm1\right)\)

\(A=\dfrac{5x\left(1-x\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}=-5\)

c) \(\dfrac{4x^2-5x+1}{A}=\dfrac{4x-1}{x+3}\left(Đk:x\ne-3;A\ne0\right)\)

\(A=\dfrac{\left(4x^2-5x+1\right)\left(x+3\right)}{4x-1}=\dfrac{\left(x-1\right)\left(4x-1\right)\left(x+3\right)}{4x-1}\)

    \(=\left(x-1\right)\left(x+3\right)=x^2+2x-3\)

29 tháng 9 2023

tv cũ comback hả?

9 tháng 3 2022

a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900

=> tứ giác ADHE là hcn 

=> AH = DE (2 đường chéo bằng nhau) 

b, Xét tam giác AHB và tam giác CHA ta có

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)

c, Xét tam giác AHD và tam giác ABH có 

^ADH = ^AHB = 900

^A _ chung 

Vậy tam giác AHD ~ tam giác ABH (g.g)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1) 

tương tự tam giác AEH ~ tam giác AHC (g.g)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)

Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét tam giác ADE và tam giác ACB 

^A _ chung 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)

Vậy tam giác ADE ~ tam giác ACB (c.g.c)

 

Bạn cần bài nào vậy bạn?

13 tháng 8 2021

mình cần tất cả lun ý ạ :>

NV
13 tháng 11 2021

\(AC=2BM=20\left(cm\right)\)

\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{20^2-16^2}=12\left(cm\right)\)

14 tháng 3 2022

`x - 3/3 = 4 - 1 - 2x/5`

`->` `x = (-5)`

\(\dfrac{x-3}{3}=4-\dfrac{1-2x}{5}\)

=>5(x-3)=60-3(1-2x)

=>5x-15=60-3+6x

=>5x-15=6x+57

=>6x+57=5x-15

hay x=-72(nhận)

9 tháng 5 2022

bài 2:

a. <=> x2 +5x-3x-15<x2-12

<=> x2-x2+5x-3x<-12+15

<=>2x<3

<=>x<\(\dfrac{3}{2}\)

S={x|x<\(\dfrac{3}{2}\)}

b. <=> 9(x-4) - 3(2x-5) < 2(5x+7)

<=> 9x-36 -6x+15 < 10x+14

<=>9x-6x-10x<14+36-15

<=> -7x<35

<=>x>-5

S={x|x>-5}

bài 3:

gọi chiều rộng ban đầu là x

     chiều dài ban đầu là 3x

gọi chiều rộng lúc sau là x+6

     chiều dài lúc sau là 3x-5

theo đề ta có:

x.3x +334= (x+6)(3x-5)

<=> 3x2+334= 3x2-5x+18x-30

<=> 3x2-3x2+5x-18x=-30-334

<=>-13x=-364

<=>x=28

Vậy chiều rộng ban đầu là 28m

      chiều dài ban đầu là 3.28=84(m)

26 tháng 5 2022

a,

Xét Δ ABH và Δ CBA, có :

\(\widehat{ABH}=\widehat{CAB}\) (góc chung)

\(\widehat{AHB}=\widehat{CAB}=90^o\)

=> Δ ABH ~ Δ CBA (g.g)

=> \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)

=> \(AB^2=BH.BC\)

Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (Py - ta - go)

=> \(BC^2=15^2+20^2\)

=> BC = 25 (cm)

Ta có : \(AB^2=BH.BC\) (cmt)

=> \(15^2=BH.25\)

=> BH = 9 (cm)

Ta có : BC = BH + CH

=> 25 = 9 + CH

=> CH = 16 (cm)

26 tháng 5 2022

b,

Xét Δ AMN và Δ ACB, có :

\(\widehat{MAN}=\widehat{CAB}=90^o\)

\(\widehat{MAN}=\widehat{CAB}\) (góc chung)

=> Δ AMN ~ Δ ACB (g.g)

=> \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

=> AM.AB = AN.AC

Ta có : \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

=> \(\dfrac{AB}{AC}=\dfrac{AN}{AM}\)

=> \(\dfrac{AN}{AM}=\dfrac{15}{20}=\dfrac{3}{4}\)

Vậy : ta có kết luận : Δ AMN = \(\dfrac{3}{4}\) Δ ACB