Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)
a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1
=2
b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\sqrt{x}-2\)
=3
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)
\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)
\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)
1) Rút gọn biểu thức M: M = (2√x)/(√x - 3) - (x + 9√x)/(x - 9) = (2√x(x - 9) - (x + 9√x)(√x - 3))/(√x - 3)(x - 9) = (2x√x - 18√x - x√x + 9x + 9x - 27√x - 9√x + 27 )/(√x - 3)(x - 9) = (2x√x - 36√x + 27x)/(√x - 3)(x - 9) = (x(2√x - 36) + 27x) /(√x - 3)(x - 9) = (x(2√x - 36 + 27))/(√x - 3)(x - 9) = (x(2√x - 9))/( √x - 3)(x - 9) Do đó biểu thức M Rút gọn là: M = (x(2√x - 9))/(√x - 3)(x - 9) 2) Tìm các giá trị của x ă mãn M/N.(căn x + 3) = 3x - 5: Ta có phương trình: M/N.(căn x + 3) = 3x - 5 Đặt căn x + 3 = t, t >= 0, ta có x = t^2 - 3 Thay x = t^2 - 3 vào biểu thức M/N, ta có: M/N = [(t^2 - 3)(2√(t^2 - 3) - 9)]/[(t^2 - 3 + 5)t] = [(2(t^2 - 3) √(t^2 - 3) - 9(t^2 - 3))]/(t^3 + 2t - 3t - 6) = [2(t^2 - 3)√(t^2 - 3) - 9(t^2 - 3)]/(t(t - 1)(t + 2)) Đặt u = t^2 - 3, ta có: M/N = [2u√u - 9u]/((u + 3)(u + 2)) = [u(2√u - 9)]/((u + 3)(u + 2)) Đặt v = √u, ta có: M/N = [(v^ 2 + 3)(2v - 9)]/[((v^2 + 3)^2 - 3)(v^2 + 2)] = [(2v^3 - 18v + 6v - 54)]/[ ( (v^4 + 6v^2 + 9) - 3)(v^2 + 2)] = (2v^3 - 12v - 54)/(v^4 + 6v^2 + 6v^2 - 9v^2 + 18) = (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) Ta cần tìm các giá trị của v đối xứng phương trình M/N = 3x - 5: (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3(t^2 - 3) - 5 (2v ^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3t^ 2 - 14 (2v^3 - 12v - 54) = (v^4 + 12v^2 + 18)(3t^2 - 14) Tuy nhiên, từ t = √(t^2 - 3), ta có v = √u = √(t^2 - 3) => (2(v^2)^3 - 12(v^2) - 54) = ((v^2)^4 + 12(v^2)^2 + 18) (3(v^2 - 3) - 14) => 2v^
Bài 1:
\(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)
Bài 2:
a) Ta có: \(A=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để A=16 thì \(\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
hay x=15
Câu 1:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\left(x\ge0;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
Câu 2:
\(V\left(3\right)=12000000-1400000.3=7800000\)
Có: \(V\left(t\right)=6400000\) \(\Leftrightarrow12000000-1400000t=6400000\)
\(\Leftrightarrow t=4\) => Sau 4 năm thì gtri chiếc máy tính này còn 6400000 đ
b,\(\left\{{}\begin{matrix}2x+y=5\\mx+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{4-mx}{3}=5\\y=\dfrac{4-mx}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(6-m\right)=11\left(1\right)\\y=\dfrac{4-mx}{3}\end{matrix}\right.\)
Xét \(m=6\) thay vào pt ta đc \(\left\{{}\begin{matrix}2x+y=5\\6x+3y=4\end{matrix}\right.\) (vô nghiệm)
\(\Rightarrow m\ne6\)
Từ (1) \(\Rightarrow x=\dfrac{11}{6-m}\)
\(\Rightarrow y=\dfrac{4-\dfrac{11m}{6-m}}{3}\)\(=\dfrac{24-15m}{3\left(6-m\right)}\)
\(xy>0\Leftrightarrow\dfrac{11}{6-m}.\dfrac{24-15m}{3\left(6-m\right)}>0\)
\(\Leftrightarrow\dfrac{11\left(24-15m\right)}{3\left(6-m\right)^2}>0\)
\(\Leftrightarrow24-15m>0\Leftrightarrow m< \dfrac{24}{15}\)
`A=(2sqrtx)/(sqrtx-3)-(x+9sqrtx)/(x-9)`
`đk:x>=0,x ne 9`
`A=(2x+6sqrtx)/(x-9)-(x+9sqrtx)/(x-9)`
`=(x-3sqrtx)/(x-9)`
`=sqrtx/(sqrtx+3)`
a) \(P=\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}=\dfrac{\sqrt{5}+2+\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\dfrac{2\sqrt{5}}{\left(\sqrt{5}\right)^2-2^2}=2\sqrt{5}\)
b)\(Q=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}\)
\(Q=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
Tick hộ nha
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Để P nguyên
\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)
\(\Leftrightarrow3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)
Mà \(\sqrt{x}\ge0,\forall x\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy để P nguyên \(\Leftrightarrow x=1\)
\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-4+\sqrt{x}+4\right)}{7\sqrt{x}}=\dfrac{2}{7}\)