K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\overrightarrow{b}=x\cdot\overrightarrow{a}+y\cdot\overrightarrow{c}\)

mà \(\overrightarrow{b}=\left(-1;-1\right);\overrightarrow{a}=\left(4;-2\right);\overrightarrow{c}=\left(2;5\right)\)

nên \(\left\{{}\begin{matrix}4x+2y=-1\\-2x+5y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+2y=-1\\-4x+10y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12y=-3\\4x+2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{4}\\4x=-1-2y=-1-2\cdot\dfrac{-1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{8}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(\overrightarrow{b}=\dfrac{-1}{8}\cdot\overrightarrow{a}+\dfrac{-1}{4}\cdot\overrightarrow{c}\)

Câu 1: B

Câu 2: A

Câu 3: D

Câu 4: A

Câu 1: B

Câu 2: A

Câu 3: D

Câu 4: A

1 tháng 7 2018

a) Đúng

b) Đúng

c) Sai

d) Đúng

17 tháng 2 2021

TL: A, B, D: Đúng; C: Sai

NV
16 tháng 12 2020

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)

Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)

\(\Rightarrow D\left(0;6\right)\)

NV
4 tháng 1

C là mệnh đề đúng

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:
Giả sử 3 vecto trên đôi một ngược hướng nhau

\(\overrightarrow{a}, \overrightarrow{b}\) ngược hướng 

$\overrightarrow{c},\overrightarrow{b}$ ngược hướng

$\Rightarrow \overrightarrow{a}, \overrightarrow{c}$ cùng ngược hướng với $\overrightarrow{b}$

$\Rightarrow \overrightarrow{a}, \overrightarrow{c}$ cùng hướng (trái giả sử)

Vậy ít nhất 2 trong số 3 vecto cùng hướng.

 

14 tháng 1 2021

Giả thiết => cos \(\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{1}{2}\)

⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)