Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(y'=\left(x^2\right)'+\left(4sinx\right)'=2x+4cosx\)
b.
\(y'=\left(2x^3\right)'-\left(sinx\right)'+\left(2\right)'=6x^2-cosx\)
c.
\(y'=\left(5sin\left(x-\dfrac{\pi}{4}\right)\right)'=5.\left(x-\dfrac{\pi}{4}\right)'.cos\left(x-\dfrac{\pi}{4}\right)=5cos\left(x-\dfrac{\pi}{4}\right)\)
4a.
\(y=2x^2-tanx\Rightarrow y'=\left(2x^2\right)'-\left(tanx\right)'=4x-\dfrac{1}{cos^2x}\)
b.
\(y'=\left(3tan\left(x+\dfrac{\pi}{3}\right)\right)'-\left(4sinx\right)'=3\left(x+\dfrac{\pi}{3}\right)'.\dfrac{1}{cos^2\left(x+\dfrac{\pi}{3}\right)}-4cosx\)
\(=\dfrac{3}{cos^2\left(x+\dfrac{\pi}{3}\right)}-4cosx\)
5a.
\(y'=\left(2x\right)'-\left(3sinx\right)'+\left(2cotx\right)'=2-3cosx-\dfrac{2}{sin^2x}\)
b.
\(y'=\left(cot\left(3x+\dfrac{\pi}{6}\right)\right)'-\left(4cosx\right)'=\left(3x+\dfrac{\pi}{6}\right)'.\dfrac{-1}{sin^2\left(3x+\dfrac{\pi}{6}\right)}+4sinx\)
\(=-\dfrac{3}{sin^2\left(3x+\dfrac{\pi}{6}\right)}+4sinx\)
MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB
Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)
\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)
Do MN song song PQ \(\Rightarrow\) MNQP là hình thang
Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)
Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)
\(\Rightarrow\) Thiết diện là hình thang cân
\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)
Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)
\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)
\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)
6. Trên \(\left[0;\dfrac{\pi}{2}\right]\) hàm \(y=cosx\) giảm còn \(y=sinx\) tăng
\(\Rightarrow\dfrac{1+cosx}{1+sinx}\) giảm
\(\Rightarrow y_{max}=y\left(0\right)=2\)
\(y_{min}=y\left(\dfrac{\pi}{2}\right)=\dfrac{1}{2}\)
7. Hàm không tồn tại GTLN trên khoảng đã cho (x càng gần \(-\dfrac{\pi}{4}\) thì y càng gần dương vô cực)
\(1+tanx\) tăng, không âm \(\Rightarrow\dfrac{1}{1+tanx}\) giảm \(\Rightarrow y_{min}=y\left(\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)
18C
22D
26B
Giải thích thêm:
ta có: v=s'(t)=3t²-6t+6
a=s"(t)=6t-6
Thời điểm gia tốc bị triệt tiêu khi a=0
⇔6t-6=0
⇔t=1
Vậy v=3.1²-6.1+6=3 (m/s)
32A
34C
35A
cho mình hỏi là tại sao ở câu 26 lại phải đạo hàm thêm lần nữa vậy?
a.
\(y'=\left(x^2\right)'+\left(4sinx\right)'=2x+4cosx\)
b.
\(y'=\left(2x^3\right)'-\left(sinx\right)'+\left(2\right)'=6x^2-cosx\)
c.
\(y'=\left(5sin\left(x-\dfrac{\pi}{4}\right)\right)'=5cos\left(x-\dfrac{\pi}{4}\right).\left(x-\dfrac{\pi}{4}\right)'=5cos\left(x-\dfrac{\pi}{4}\right)\)