K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

1) (12x^2-12xy+3y^2)-10x(2x-y)+8=3(2x-y)^2-10x(2x-y)+8=(2x-y)(6x-3y-10x)+8=8-(2x-3y)(4x+3y)

2) áp dụng BĐT cauchy ta có (x+y)(y+z)(z+x)\(\ge\)\(2\sqrt{xy}\).\(2\sqrt{yz}\).\(2\sqrt{xz}\)=8xyz

dấu đẳng thức xảy ra khi x=y=z

NV
30 tháng 3 2019

Bạn chép sai đề, đề đúng phải là \(x^2+y^2+z^2\ge3\)

Áp dụng các BĐT quen thuộc:

\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

Cộng vế với vế:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

22 tháng 1 2016

134

      tích đi rồi tích lại cho