Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)
\(b,A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\frac{a-1}{2\sqrt{a}}.\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\right)\)
\(=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}.\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)
\(=\frac{\sqrt{a}\left(\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right)}{2\sqrt{a}}\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}-1-\sqrt{a}-1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(=\frac{\sqrt{a}.\left(-2\right).2\sqrt{a}}{2\sqrt{a}}\)
\(=-2\sqrt{a}\)
\(c,\)Để A= -4 thì
\(-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)
Kết bạn với mình nha ....
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\) \(đk:a>0;a\ne9\)
\(=\frac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
\(=\frac{2}{\sqrt{a}+3}\)
\(đk:a>0;a\ne9\)
\(A>\frac{1}{2}=>\frac{2}{\sqrt{a}+3}>\frac{1}{2}\)
\(=>4>\sqrt{a}+3\)
\(< =>\sqrt{a}>1\)
\(< =>a=1\)
em cảm ơn nhiều ạ!