K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 1 2022

Đây là bài tập hay đang kiểm tra đây em? :)

25 tháng 1 2022

đây là đề thi 

NV
16 tháng 11 2021

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

16 tháng 11 2021

thầy ơi cho em hỏi:

chỗ dấu >= đầu tiên là thầy dùng bđt bunhacoxki đúng không thầy

NV
14 tháng 1 2022

Khá dễ dàng nhận ra do tính chất đường trung bình nên tam giác \(A_1B_1C_1\) chia tam giác ABC thành 4 tam giác có diện tích bằng nhau

\(\Rightarrow S_{A_1B_1C_1}=\dfrac{1}{4}S_{ABC}\)

Do đó \(S_1;S_2...;S_{50}\) lập thành 1 cấp số nhân với \(u_1=S_1=\dfrac{6}{4}=\dfrac{3}{2}\) và \(q=\dfrac{1}{4}\)

\(\Rightarrow S\left(50\right)=\dfrac{3}{2}.\dfrac{1-\left(\dfrac{1}{4}\right)^{50}}{1-\dfrac{1}{4}}\)

14 tháng 1 2022

bài này là 1 csn Sn=1/4S(n-1) đúng không ạ

14 tháng 1 2022

bài này mình gọi cttq Un=an^3+bn^2+cn+d. Khi thay n=1 thì = 6, n=2 thi Un=-4... đúng ko ạ

NV
14 tháng 1 2022

Hướng giải đó đúng rồi đấy, với dãy số thì cách đơn giản nhất là đưa về đa thức (chắc người ra đề cũng nghĩ vậy nên kết quả khá đẹp: a=-1, b=2, c=-1, d=6

25 tháng 8 2021

Câu 4: D

Câu 5 : D

Câu 6 : A

18 tháng 2 2022

\(\lim\limits_{x\rightarrow3}\left(\dfrac{1}{x}-\dfrac{1}{3}\right)\dfrac{1}{\left(x-3\right)^3}=\lim\limits_{x\rightarrow3}\dfrac{1}{3x\left(x-3\right)^2}=+\infty\)

18 tháng 2 2022

\(\lim\limits_{x\rightarrow1}\dfrac{x^3-\sqrt{3x+2}}{x-1}=\dfrac{1^3-\sqrt{3.1+2}}{1-1}=-\infty\)