Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số hàng chục là X hàng đơn vị là Y
theo đề bái có: X+Y=7 (1)
nếu đổi chỗ thì được 1 số hơn số ban đầu là 27 nên ta có:
(10Y+X)-(10X+Y)=27 (2)
có hệ phương trình
X+Y=7
(10Y+X)-(10X+Y)=27
==>giải hệ phương trình được X=2 và Y= 5
hình bạn tự vẽ nha
giả sử : góc AOC \(\le\) góc BOC
Các điểm O, E,M,F thuộc đường tròn đường kính OM=R
Các điểm O,G,N,H thuộc đường tròn đường kính ON=R
Trong 2 đường tròn bằng nhau đó, góc nội tiếp EOF = góc nội tiếp GNH(cùng bù với góc NOH)
nên góc EF = góc GH
=>EF=GH
Lời giải:
Gọi vận tốc ban đầu là $x$ km/h
Thời gian dự định: $\frac{AB}{x}$ (h)
Khi vận tốc tăng $a$ km/h thì thời gian đi là: $\frac{AB}{x+a}$ (h)
$\frac{AB}{x}-\frac{AB}{x+a}=0,5$
$\Leftrightarrow \frac{aAB}{x(x+a)}=0,5(*)$
Khi vận tốc giảm $b$ km/h thì thời gian đi là: $\frac{AB}{x-b}$ (h)
$\frac{AB}{x-b}-\frac{AB}{x}=1$
$\Leftrightarrow \frac{bAB}{x(x-b)}=1(**)$
Từ $(*); (**)\Rightarrow \frac{x-b}{x+a}.\frac{a}{b}=0,5$
$\Leftrightarrow 2a(x-b)=b(x+a)$
$\Leftrightarrow 2ax-2ab=bx+ab$
$\Leftrightarrow x(2a-b)=3ab$
$\Rightarrow x=\frac{3ab}{2a-b}$
Đến đây bạn thay $a,b$ vô để tính thôi.
1)
a) \(2\sqrt{50}-3\sqrt{2}+\dfrac{1}{3}\sqrt{18}\)
\(=2\cdot5\sqrt{2}-3\sqrt{2}+\dfrac{1}{3}\cdot3\sqrt{2}\)
\(=10\sqrt{2}-3\sqrt{2}+\sqrt{2}\)
\(=8\sqrt{2}\)
b) \(\dfrac{11}{4-\sqrt{5}}-\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
\(=\dfrac{11\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=\dfrac{11\left(4+\sqrt{5}\right)}{16-5}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}\)
\(=\dfrac{11\left(4+\sqrt{5}\right)}{11}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{3}\)
\(=4+\sqrt{5}-\sqrt{5}+\sqrt{2}\)
\(=4+\sqrt{2}\)
c) \(\sqrt{8-2\sqrt{15}}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
a,
c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)
Vậy \(\left(D_3\right):y=-2x-2\)
Gọi giao điểm AE và BP là F;
Gọi giao điểm QD và AB là H;
Gọi kéo dài AD cắt BF tại P'
Dễ cm M là trung điểm AC
Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)
Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\)
\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)
Mà CM=AM (vì M là tđ AC)
\(\Rightarrow QD=DH\)
Dễ cm P là trung điểm BF
Xét \(\Delta ABP'\) có DH//BP'
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)
Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)
Mà DH=QD (cmt)
\(\Rightarrow BP'=FP'\)
\(\Rightarrow\)P' là trung điểm BF
\(\Rightarrow P\equiv P'\)
\(\Rightarrow A,D,P\) thẳng hàng
a. \(\Delta'=1^2-1.\left(-3\right)=4>0\)
Do \(\Delta'>0\) nên PT luôn có 2 nghiệm phân biệt.
b. Dựa vào hệ thức Vi - ét, ta có:
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{2}{1}=-2\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)
c. \(U=\left(x_2-x_2\right)^2-2x_1^2x_2^2\)
\(=x_1^2-2x_1x_2+x_2^2-2\left(x_1x_2\right)^2\)
\(=x_1^2+x^2_2-2x_1x_2-2\left(x_1x_2\right)^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1x_2\right)^2\)
\(=\left(-2\right)^2-2.\left(-3\right)-2.\left(-3\right)^2\)
\(=-8\)
d. \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}-3\)
\(=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}-3\)
\(=\dfrac{x_1+x_2}{x_1x_2}-3\)
\(=\dfrac{-2}{-3}-3\)
\(=-\dfrac{7}{3}\)