Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7a.
\(y'=3x^2-2\left(m-1\right)x-m-3\)
Hàm nghịch biến trên \(\left(-1;0\right)\) khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(-1;0\right)\)
\(\Leftrightarrow3x^2-2\left(m-1\right)x-m-3\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+3\left(m+3\right)>0\\x_1\le-1< 0\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+10>0\left(\text{luôn đúng}\right)\\f\left(-1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3+2\left(m-1\right)-m-3\le0\\-m-3\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m-3\le0\end{matrix}\right.\) \(\Leftrightarrow-3\le m\le2\)
7b.
\(y'=-x^2+2\left(m-1\right)x+m+3\)
Hàm đồng biến trên \(\left(0;3\right)\) khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(0;3\right)\)
\(\Leftrightarrow-x^2+2\left(m-1\right)x+m+3\ge0\) ; \(\forall x\in\left(0;3\right)\)
\(\Leftrightarrow m\left(2x+1\right)\ge x^2+2x-3\)
\(\Leftrightarrow m\ge\dfrac{x^2+2x-3}{2x+1}\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;3\right]}\dfrac{x^2+2x-3}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+2x-3}{2x+1}\) trên \(\left(0;3\right)\)
\(f'\left(x\right)=\dfrac{2\left(x^2+x+4\right)}{\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)< f\left(3\right)=\dfrac{12}{7}\)
\(\Rightarrow m\ge\dfrac{12}{7}\)
Đặt \(\overrightarrow{d}=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{a}.\overrightarrow{d}=x+y-2z\\\overrightarrow{b}.\overrightarrow{d}=2x-y+2z\\\overrightarrow{c}.\overrightarrow{d}=-2x+3y-2z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-2z=4\\2x-y+2z=5\\-2x+3y-2z=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{d}=\left(3;6;\dfrac{5}{2}\right)\)
\(log_3\left(\dfrac{a^4}{9}\right)=log_3a^4-log_39=4log_3a-2=2\left(2log_3-1\right)\)
Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox
\(\Rightarrow V=V_1+V_2\)
\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)
\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)
\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)
\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)
\(\Rightarrow k=\dfrac{15}{7}\)
Để hàm bậc 3 có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y=0\) có 3 nghiệm pb
\(\Leftrightarrow x^3-\left(2m+1\right)x^2+\left(m+1\right)x+m-1=0\) có 3 nghiệm pb
\(\Leftrightarrow\left(x-1\right)\left(x^2-2mx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-2mx-m+1=0\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=1-2m-m+1\ne0\\\Delta'=m^2+m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\\left[{}\begin{matrix}m< \dfrac{-1-\sqrt{5}}{2}\\m>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Có 19 số tự nhiên nhỏ hơn 20 thỏa mãn
ta có :
ad oi mo ho em nick cv15c_nguyenphutrong em xin loi a