Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
Câu 17:
\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)
\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)
Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)
\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)
\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)
Câu 11)
Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)
\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)
\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)
\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)
Đáp án C
Câu 20)
Ta có:
\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)
\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)
\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)
Đáp án A.
Câu nào e đang vướng mắc thì note lại để mọi người giải đáp giúp chứ!
đồng ý ! và mình khuyên bạn, bạn nên ghi rõ chỗ nào thắc mắc và bạn đã cố gắng tới đâu, để mình biết mà chỉ
Lời giải:
Đặt \(I=\int \frac{\sqrt{x^2-1}dx}{x^3}\)
Nguyên hàm từng phần:
Đặt \(\left\{\begin{matrix} u=\sqrt{x^2-1}\\ dv=\frac{1}{x^3}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{x}{\sqrt{x^2-1}}dx\\ v=\frac{-1}{2x^2}\end{matrix}\right.\)
\(\Rightarrow I=\frac{-\sqrt{x^2-1}}{2x^2}+\int \frac{dx}{x\sqrt{x^2-1}}\)
Xét \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(x^2)}{2x^2\sqrt{x^2-1}}\). Đặt \(\sqrt{x^2-1}=t\rightarrow x^2=t^2+1\)
Khi đó, \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(t^2+1)}{2t(t^2+1)}=\int \frac{dt}{t^2+1}\)
Đặt \(t=\tan m\), đây là một dạng toán đặt quen thuộc, ta thu
được \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{dt}{t^2+1}=m=\tan ^{-1}t=\tan ^{-1}(\sqrt{x^2-1})\)
Do đó, \(\int \frac{\sqrt{x^2-1}dx}{x^3}=\frac{-\sqrt{x^2-1}}{2x^2}+\frac{1}{2}\tan ^{-1}(\sqrt{x^2-1})\)
\(\Rightarrow \int ^{\sqrt{2}}_{1}\frac{\sqrt{x^2-1}}{x^3}dx=\frac{\pi}{8}-\frac{1}{4}\)
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
Lời giải:
Ta có: \(y=-x^3+3x^2-1\Rightarrow y'=-3x^2+6x\)
Để hàm đồng biến thì \(y'=-3x^2+6x\geq 0\)
\(\Leftrightarrow x(x-2)\leq 0\Leftrightarrow 0\leq x\leq 2\)
\(\Leftrightarrow x\in [0;2]\)
Ta có thể chọn đáp án B
câu B nhá bạn
tính y đạo hàm rồi cho y'=0
tìm nghệm và xét dấu
đáp án: D bạn nhé
cho mk xin một k nhé
chúc bn hok tốt