loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 12:

a: (d): \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)

=>(d) đi qua T(-2;1) và có vecto chỉ phương là (-2;2)

(d')\(\perp\)(d) nên (d') nhận vecto (-2;2) làm vecto pháp tuyến

Phương trình (d') là:

-2(x-3)+2(y-1)=0

=>-(x-3)+(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

b: (d) có vecto chỉ phương là (-2;2)

=>(d) có vecto pháp tuyến là (2;2)=(1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+2+y-1=0

=>x+y+1=0

Tọa độ giao điểm H của (d) và (d') là:

\(\left\{{}\begin{matrix}x+y+1=0\\-x+y+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=-1\\-x+y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1-x=-1+\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)

c: A' đối xứng với A qua d

=>A'A\(\perp\)d

mà d'\(\perp\)d và \(A\in d'\)

nên d' chính là phương trình AA'

=>H là trung điểm của A'A

A(3;1); H(-3/2;1/2); A'(x;y)

H là trung điểm của A'A

=>\(\left\{{}\begin{matrix}x_A+x_{A'}=2\cdot x_H=-3\\y_A+y_{A'}=2\cdot y_H=2\cdot\dfrac{1}{2}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_{A'}+3=-3\\y_A+1=1\end{matrix}\right.\)

=>A'(-6;0)

Bài 13:

a: M(2;-5); N(4;-3)

Tọa độ tâm I là:

\(\left\{{}\begin{matrix}x=\dfrac{2+4}{2}=\dfrac{6}{2}=3\\y=\dfrac{-5+\left(-3\right)}{2}=-\dfrac{8}{2}=-4\end{matrix}\right.\)

I(3;-4); M(2;-5)

\(IM=\sqrt{\left(2-3\right)^2+\left(-5+4\right)^2}=\sqrt{2}\)

Phương trình (C) là:

\(\left(x-3\right)^2+\left(y+4\right)^2=IM^2=2\)

b: (C) có tâm là I(1;-2) và tiếp xúc với đường thẳng 4x-3y+5=0

=>Bán kính là \(R=d\left(I;4x-3y+5=0\right)=\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+5\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{15}{5}=3\)

Phương trình (C) là:

\(\left(x-1\right)^2+\left(y+2\right)^2=R^2=9\)

c: Gọi phương trình (C) là: \(x^2+y^2+2ax+2by+c=0\)

Thay x=1 và y=0 vào (C), ta được:

\(1^2+0^2+2\cdot a\cdot1+2\cdot b\cdot0+c=0\)

=>2a+c=-1(1)

Thay x=0 và y=-2 vào (C), ta được:

\(0^2+\left(-2\right)^2+2\cdot a\cdot0+2\cdot b\cdot\left(-2\right)+c=0\)

=>4-4b+c=0

=>-4b+c=-4(2)

Thay x=2 và y=3 vào (C), ta được:

\(2^2+3^2+2\cdot a\cdot2+2\cdot b\cdot3+c=0\)

=>4a+6b+c=-13(3)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+c=-1\\-4b+c=-4\\4a+6b+c=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+4b=-1+4=5\\-2a-6b=-1+13=12\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2b=5+12=17\\2a+4b=5\\2a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\2a=5-4b=5-4\cdot\dfrac{-17}{2}=5+34=39\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\a=\dfrac{39}{2}\\c=-1-2a=-1-2\cdot\dfrac{39}{2}=-40\end{matrix}\right.\)

Vậy: (C): \(x^2+y^2+39x-17y-40=0\)

 

NV
21 tháng 1 2024

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)

NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

10 tháng 2 2022

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)

Để \(A,B\ne\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)

Kết hợp ĐK \(2< m< 8\)

\(\Rightarrow m\in\left(2;8\right)\)

10 tháng 2 2022
m€{2;8} nha HT @@@@@@@@@@
10 tháng 2 2022

a) \(B\subset A\)

\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)

\(\Rightarrow2m-1\le-4< 5\le m+3\)

\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)

\(\Rightarrow m\in\varnothing\)

b) \(A\text{∩ }B=\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)

Vậy \(m< -7;m>3\)

10 tháng 2 2022
M<-7;m>3 nha HT @@@@@@@@@@@@@@
29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

29 tháng 7 2022

a)     (-\infty ; \, 2) \cap (-1; \, +\infty)(;2)(1;+)=(-1;2)

b)     (1;6∪ [4;8)=(-1;8]

c)      (;5] (5;1)={-5}
30 tháng 10 2023
 

ˆABC=90°+15°30'=105°30' 

Xét tam giác ABC có ˆCAB =60°, ˆABC=105°30' ta có: 

ˆCAB+ˆABC+ˆACB=180° (định lí tổng ba góc trong tam giác)

ˆACB=180°ˆCABˆABC 

ˆACB=180°60°105°30'=14°30'.

Áp dụng định lí sin trong tam giác ABC, ta có: ACsinˆABC=ABsinˆACB

AC=AB.sinˆABCsinˆACB=70.sin105°30'sin14°30'269,4(m)