K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 11:

Gọi tọa độ chân đường cao kẻ từ A xuống BC là H(x;y)

=>\(AH\perp\)BC

A(-1;2); B(0;3); C(5;-2)

\(\overrightarrow{BC}=\left(5;-5\right);\overrightarrow{BH}=\left(x;y-3\right)\)

\(\overrightarrow{AH}=\left(x+1;y-2\right)\)

B,H,C thẳng hàng nên ta có: \(\dfrac{x}{5}=\dfrac{y-3}{-5}\)

=>x=-y+3

=>x+y=3(1)

AH\(\perp\)BC

=>\(\overrightarrow{AH}\cdot\overrightarrow{BC}=0\)

=>\(5\left(x+1\right)+\left(-5\right)\cdot\left(y-2\right)=0\)

=>\(\left(x+1\right)-\left(y-2\right)=0\)

=>x+1-y+2=0

=>x-y=-3(2)

Từ (1) và (2) ta có hệ phương trình

\(\left\{{}\begin{matrix}x+y=3\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x+y=3\end{matrix}\right.\)

=>x=0 và y=3

=>Chọn A

Câu 12: 

B(-1;3); C(3;1); A(x;y)

\(\overrightarrow{AB}=\left(-1-x;3-y\right)\)\(\overrightarrow{AC}=\left(3-x;1-y\right)\)

\(AB=\sqrt{\left(-1-x\right)^2+\left(3-y\right)^2}=\sqrt{\left(y-3\right)^2+\left(x+1\right)^2}\)

\(AC=\sqrt{\left(3-x\right)^2+\left(1-y\right)^2}=\sqrt{\left(x-3\right)^2+\left(y-1\right)^2}\)

ΔABC vuông cân tại A

=>AB\(\perp\)AC và AB=AC

=>\(\left\{{}\begin{matrix}\overrightarrow{AB}\cdot\overrightarrow{AC}=0\\AB=AC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-1-x\right)\left(3-x\right)+\left(3-y\right)\left(1-y\right)=0\\\left(y-3\right)^2+\left(x+1\right)^2=\left(x-3\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\y^2-6y+9+x^2+2x+1=x^2-6x+9+y^2-2y+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\-6y+2x=-6x-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\8x=4y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x-3+y^2-4y+3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x+y^2-4y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x+4x^2-4\cdot2x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x\\5x^2-10x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x\left(x-2\right)=0\\y=2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=2x\end{matrix}\right.\)

\(x\left(x-2\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Khi x=0 thì \(y=2\cdot0=0\)

Khi x=2 thì \(y=2\cdot2=4\)

=>Chọn B

Câu 13: A(0;4); B(3;4); C(3;0)

\(AB=\sqrt{\left(3-0\right)^2+\left(4-4\right)^2}=3\)

\(AC=\sqrt{\left(3-0\right)^2+\left(0-4\right)^2}=\sqrt{3^2+4^2}=5\)

\(BC=\sqrt{\left(3-3\right)^2+\left(0-4\right)^2}=4\)

Vì \(AB^2+BC^2=AC^2\)

nên ΔABC vuông tại B

=>\(R=\dfrac{AC}{2}=2,5\)

=>Chọn A

3 tháng 12 2023

11 a
12 b
13 a

23 tháng 2 2022

ko bt bở vì em mới hok đến lớp 5 thuihiha

1: (x-1)^2+(y+2)^2=25

=>R=5; I(1;-2)

2: Δ'//Δ nên Δ': 3x-4y+c=0

d(I;Δ')=5

=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)

=>|c+11|=25

=>c=14 hoặc c=-36

=>3x-4y+14=0 hoặc 3x-4y-36=0

3x-4y+14=0 

=>VTPT là (3;-4) và (Δ') đi qua A(2;5)

=>VTCP là (4;3)

=>PTTS là x=2+4t và y=5+3t

3x-4y-36=0

=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)

=>VTCP là (4;3)

PTTS là x=0+4t và y=-9+3t

 

24 tháng 10 2021

Phương trình hoành độ giao điểm là:

\(-2x^2+3x+1=mx-2m+1\)

\(\Leftrightarrow-2x^2+\left(3-m\right)x+2m=0\)

Để (P) tiếp xúc với (d) thì \(\left(3-m\right)^2-4\cdot\left(-2\right)\cdot2m=0\)

\(\Leftrightarrow m^2-6m+9+16m=0\)

\(\Leftrightarrow m^2-25m+9=0\)(1)

\(\text{Δ}=\left(-25\right)^2-4\cdot9=625-36=589\)

Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{25-\sqrt{589}}{2}\\m_2=\dfrac{25+\sqrt{589}}{2}\end{matrix}\right.\)

1: vecto AC=(-2;2)

=>VTCP là (-2;2); vtpt là (2;2)

2: vecto AB=(-10;-2)=(5;1)

=>VTPT của Δ là (5;1)

vtcp của Δ là (-1;5)

NV
6 tháng 3 2023

\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt

b.

\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp

NV
20 tháng 1 2022

Do ABCD là hình thoi \(\Rightarrow\overrightarrow{AD}=\overrightarrow{BC}\), do M là trung điểm AB \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)

Do đó:

\(\overrightarrow{MA}+\overrightarrow{MD}+2\overrightarrow{MC}=\overrightarrow{MA}+\left(\overrightarrow{MA}+\overrightarrow{AD}\right)+2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(=2\left(\overrightarrow{MA}+\overrightarrow{MB}\right)+\overrightarrow{AD}+2\overrightarrow{BC}=\overrightarrow{BC}+2\overrightarrow{BC}=3\overrightarrow{BC}\) 

7D

8C

9D

10B

11C

1 tháng 5 2021

1.

undefined

26 tháng 9 2021

Làm ơn giúp em với ạ😿

Câu 14: D

Câu 15: A