K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MIPC có

K là trung điểm của MP

K là trung điểm của IC

Do đó: MIPC là hình bình hành

mà MI=PI

nên MIPC là hình thoi

15 tháng 11 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}2x+3\ne0\\2x+1\ne0\\\left(2x+3\right)\left(2x+1\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{3}{2}\\x\ne-\dfrac{1}{2}\\\left(2x+3\right)\left(2x+1\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{3}{2}\\x\ne-\dfrac{1}{2}\end{matrix}\right.\)

b) \(\Rightarrow P=\dfrac{2\left(2x+1\right)+3\left(2x+3\right)-6x-5}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\dfrac{4x+2+6x+9-6x-5}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\dfrac{4x+6}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\dfrac{2\left(2x+3\right)}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\dfrac{2}{2x+1}\)

c) \(P=-1\Rightarrow\dfrac{2}{2x+1}=-1\\ \Rightarrow2=-2x-1\\ \Rightarrow2x=-3\\ \Rightarrow x=-\dfrac{3}{2}\)

 

14 tháng 11 2021

Bài 6

\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow\dfrac{1}{x+5}=-3\Leftrightarrow-3\left(x+5\right)=1\Leftrightarrow x=-\dfrac{16}{3}\\ \Leftrightarrow Q=\left(3x-7\right)^2=\left[3\cdot\left(-\dfrac{16}{3}\right)-7\right]^2=529\)

14 tháng 11 2021

Bài 7:

\(a,ĐK:x\ne\pm3\\ b,P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\\ b,P=4\Leftrightarrow4\left(x-3\right)=4\Leftrightarrow x=4\)

15 tháng 11 2021

\(a,=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\\ b,=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\\ c,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ d,=3\left(x^2-2x+5x-10\right)=3\left(x-2\right)\left(x+5\right)\\ e,=-3x^2+6x-x+2=\left(x-2\right)\left(1-3x\right)\\ f,=x^2-x-6x+6=\left(x-1\right)\left(x-6\right)\\ h,=4\left(x^2-3x-6x+18\right)=4\left(x-3\right)\left(x-6\right)\\ i,=3\left(3x^2-3x-8x+5\right)=3\left(x-1\right)\left(3x-8\right)\\ k,=-\left(2x^2+x+4x+2\right)=-\left(2x+1\right)\left(x+2\right)\\ l,=x^2-2xy-5xy+10y^2=\left(x-2y\right)\left(x-5y\right)\\ m,=x^2-xy-2xy+2y^2=\left(x-y\right)\left(x-2y\right)\\ n,=x^2+xy-3xy-3y^2=\left(x+y\right)\left(x-3y\right)\)

15 tháng 11 2021

Bào quan riboxom trong chất tế bào có chức năng gì? 

28 tháng 10 2021

a) \(A=\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

        \(=\dfrac{2\left(x-2\right)}{x+2}\)

    Thay \(x=\dfrac{1}{2}\) vào A ta được:

     \(A=\dfrac{2\cdot\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{-3}{\dfrac{5}{2}}=-\dfrac{6}{5}\)

28 tháng 10 2021

b) \(B=\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}\)

     Thay \(x=-5,y=10\) vào B ta đc:

     \(B=\dfrac{-5}{-5+10}=-1\)

27 tháng 9 2021

Bài 1:

a) \(=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1=\left(x+1\right)\left(x+3\right)\)

f) \(=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-3^2=\left(x-5\right)\left(x+1\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

k) \(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^3-x-1\right)\)

m) \(=\left(x^4+4x^2+4\right)-9=\left(x^2+2\right)^2-9=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

Bài 2:

a) \(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

e) \(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)

f) giống câu a

g) \(=x^2-2xy=x\left(x-2y\right)\)

i) \(=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

k) \(=\left(x+1\right)^3-27z^3=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

l) \(=\left(2x+1\right)^2-9y^2=\left(2x+1-3y\right)\left(2x+1+3y\right)\)

27 tháng 2 2022

Xét tam giác MNP có MP là đường phân giác của \(\widehat{MNP}\) ta có:

\(\dfrac{MN}{NP}=\dfrac{MF}{FP}\Leftrightarrow\dfrac{MN}{NP}=\dfrac{MF}{MP-MF}\Leftrightarrow\dfrac{6}{10}=\dfrac{MF}{8-MF}\Rightarrow MF=3\left(cm\right)\)\(\Rightarrow FP=8-3=5\left(cm\right)\)

Xét tam giác MNP có ME là đường cao ứng với cạnh huyền, ta có: \(\dfrac{1}{ME^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\Leftrightarrow\dfrac{1}{ME^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow ME=4,8\left(cm\right)\)

30 tháng 9 2021

a) Đặt \(a=x^2+x\)

Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)

Thay a:

\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)

b) Đặt \(a=x^2+x\)

Đa thức trở thành:

\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)

Thay a:

\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)