Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABH có: góc ABH=90 độ,vuông góc với AB
Suy ra: AM.AB=AH^2(Đ/L)
CMTT tam giác AHC: AN.AC=AH^2(Đ/L)
cả hai diều suy ra:AM.AB=AN.AC
hình không đẹp lắm, mong cậu thông cảm.
Có : AH là đường cao của tam giác ABC=> goc AHB =900
Tam giác AHB vuông tại H có AM là đường cao
=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong
Tam giac AHC vuong tai H có AN là đường cao
=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong
Nen AM.AB =AN.AC
b,Tam giác AHB vuông tại H,=> cot B = BH/AH
Tam giác AHC vuông tại H => cotC = CH/AH
Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$AM.AB=AH^2$
$AN.AC=AH^2$
$\Rightarrow AM.AB=AN.AC$ (đpcm)
b.
Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$
Xét tam giác $AMN$ và $ACB$ có:
$\widehat{A}$ chung
$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)
$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)
Ta có đpcm.
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)