K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2023

loading...  

Câu 50 thì bạn nhóm cặp lại tan1*tan89*tan2*tan88*...*tan45

thì bạn sẽ thấy là tan1*tan89=tan2*tan88=...=tan45=1

=>D

Câu 51 thì bạn nhóm cặp lại \(sin^288^0;sin^22^0\); sin2860 và sin240;...;sin244 độ và sin2 46 độ thì bạn sẽ thấy từng cặp đó có tổng bằng 1

Và có 22 cặp như vậy nên đáp án là C

19 tháng 3 2021

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

19 tháng 3 2021

Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.

Chọn C

17 tháng 3 2022

Cho em xin lời giải chi tiết với ạ

17 tháng 12 2021

Câu 58: B

Câu 59: C

NV
23 tháng 1

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

NV
21 tháng 4 2021

2b.

\(Q=\dfrac{cosx}{sinx}+\dfrac{sinx}{1+cosx}=\dfrac{cosx\left(1+cosx\right)+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx\left(1+cosx\right)}=\dfrac{1}{sinx}\)

4b.

\(\Delta\) có 1 vtpt là (3;-4)

Gọi d là đường thẳng qua M và vuông góc \(\Delta\Rightarrow d\) nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x-4\right)+3\left(y+2\right)=0\Leftrightarrow4x+3y-10=0\)

H là giao điểm d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-4y+5=0\\4x+3y-10=0\end{matrix}\right.\) \(\Rightarrow H\left(1;2\right)\)