Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 32a
Thay x = -3 vào ta được
\(18+3m^2+18m=0\Leftrightarrow m=-3\pm\sqrt{3}\)
Bài 33b
\(\Delta'=4m^2-\left(4m-1\right)\left(m+1\right)=4m^2-4m^2-3m+1=1-3m\)
Để pt có 2 nghiệm pb \(1-3m>0\Leftrightarrow m< \dfrac{1}{3}\)
1: Sửa đề: tứ giác OAMB nội tiếp
góc OAM+góc OBM=180 độ
=>OAMB nội tiếp
2: góc MAE+góc OAE=90 độ
góc BAE+góc OEA=90 độ
góc OAE=góc OEA
=>góc MAE=góc BAE
=>AE là phân giác của góc MAB
mà ME là phân giác của góc AMB
nên E là tâm đường tròn nội tiếp ΔAMB
3b.
\(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m+2\right)^2>0\Rightarrow m\ne-2\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
\(x_1+x_2-2x_1x_2=8\)
\(\Leftrightarrow-m+2\left(m+1\right)=8\)
\(\Rightarrow m=6\) (thỏa mãn)
6.
\(M=x-\sqrt{x}+1=\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(M_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
5.1) Gọi \(A\left(x_A;y_A\right)\) là giao điểm của \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_A=2x_A+1\\y_A=-x_A+3\end{matrix}\right.\Rightarrow2x_A+1=-x_A+3\Rightarrow3x_A=2\Rightarrow x_A=\dfrac{2}{3}\)
\(\Rightarrow y_A=\dfrac{7}{3}\Rightarrow A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
2) Vì \(\left(d_3\right)\) đi qua A nên \(\dfrac{7}{3}=\dfrac{2}{3}\left(m-1\right)+3m-2\Rightarrow\dfrac{7}{3}=\dfrac{11}{3}m-\dfrac{8}{3}\)
\(\Rightarrow\dfrac{11}{3}m=5\Rightarrow m=\dfrac{15}{11}\)
3) Gọi \(B\left(x_B;y_B\right)\) là giao điểm của \(\left(d_1\right)\) và \(\left(d_3\right)\)
Vì \(B\in Ox\Rightarrow y_B=0\)
Vì \(B\in\left(d_1\right)\Rightarrow y_B=2x_B+1\Rightarrow0=2x_B+1\Rightarrow x_B=-\dfrac{1}{2}\)
\(\Rightarrow B\left(-\dfrac{1}{2};0\right)\Rightarrow0=-\dfrac{1}{2}\left(m-1\right)+3m-2\Rightarrow0=\dfrac{5}{2}m-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{5}{2}m=\dfrac{3}{2}\Rightarrow m=\dfrac{3}{5}\)
c) Gọi \(C\left(x_C;y_C\right)\) là giao điểm của \(\left(d_2\right)\) và \(\left(d_3\right)\)
Vì \(C\in Oy\Rightarrow x_C=0\)
Vì \(B\in\left(d_2\right)\Rightarrow y_B=-x_B+3\Rightarrow y_B=3\Rightarrow C\left(0;3\right)\)
\(\Rightarrow3=3m-2\Rightarrow3m=5\Rightarrow m=\dfrac{5}{3}\)
a: Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=sin30=1/2
=>BC=12cm
=>AC=6*căn 3(cm)
HB=AB^2/BC=3cm
HC=12-3=9cm
b: Xét ΔABH vuông tại H có sin B=AH/AB=1/2
=>góc B=30 độ
=>góc C=60 độ
BH=căn 12^2-6^2=6*căn 3(cm)
CH=AH^2/HB=2*căn 3(cm)
M=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{x-1}\right)\)
=\(\dfrac{\left(\sqrt{x}\cdot\sqrt{x}\right)-1}{\sqrt{x\left(\sqrt{x}-1\right)}}:\dfrac{\sqrt{x}-1+2}{x-1}\)
=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{x-1}\)
=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x+1}}\)
=\(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}\)
=\(\dfrac{x-1}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-1\right)}{x}\)