Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số cắt trục hoành tại 3 điểm pb \(\Leftrightarrow x^3-3x^2+m+1=0\) có 3 nghiệm pb
\(\Leftrightarrow-x^3+3x^2-1=m\) có 3 nghiệm pb
Xét hàm \(f\left(x\right)=-x^3+3x^2-1=0\)
\(f'\left(x\right)=-3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(f\left(0\right)=-1\) ; \(f\left(2\right)=3\)
\(\Rightarrow\) Pt có 3 nghiệm pb khi \(-1< m< 3\)
\(2^x-6^x-3^{x+1}+3=0\)
\(\Leftrightarrow2^x\left(1-3^x\right)+3\left(1-3^x\right)=0\)
\(\Leftrightarrow\left(2^x+3\right)\left(1-3^x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x+3=0\left(\text{vô nghiệm}\right)\\1-3^x=0\end{matrix}\right.\)
\(\Rightarrow3^x=1\Rightarrow x=0\)
Để giải phương trình , trước hết hãy viết lại phương trình theo thứ tự các thành phần của :
Kết hợp các thành phần có cùng :
Bây giờ, để tìm giá trị của , hãy giải phương trình:
Đưa hằng số về phía bên kia của phương trình:
Giải phương trình để tìm giá trị của :
Vậy giá trị của là .
Để giải phương trình , trước hết hãy viết lại phương trình theo thứ tự các thành phần của :
Kết hợp các thành phần có cùng :
Bây giờ, để tìm giá trị của , hãy giải phương trình:
Đưa hằng số về phía bên kia của phương trình:
Giải phương trình để tìm giá trị của :
Vậy giá trị của là .
Lời giải:
$y'=x^2+2mx+(m^2-4)=0$
Để hàm số đạt cực đại tại $x=1$ thì trước tiên, $y'=0$ tại $x=1$
$\Leftrightarrow 1+2m+m^2-4=0$
$\Leftrightarrow m^2+2m-3=0$
$\Leftrightarrow m=1$ hoặc $m=-3$
$f''(x)=2x+2m$.
Với $m=1$ thì $f''(1)=4>0$, trong khi đó với $m=-3$ thì $f''(1)=-4<0$
Do đó hàm đạt cực đại tại $x=1$ khi $m=-3$
Đáp án D
- Tiệm cận đứng của đồ thị là 1 giá trị âm nên loại A và B
- Hàm đồng biến trên các khoảng xác định nên loại C
Vậy D là đáp án đúng
17.
Câu 17 này đề bài sai (ở độ dài AB, nếu ko nhìn lầm thì AB=41 là 1 con số phi lý)
Cách tính như sau:
Qua \(C_1\) kẻ các đường thẳng song song AC và BC, cắt \(AA_1\) và \(BB_1\) kéo dài tại D và E
\(\Rightarrow ABC.DEC_1\) là lăng trụ đứng có thể tích V
\(V=CC_1.S_{ABC}=6.\dfrac{AB^2\sqrt{3}}{4}=\dfrac{3AB^2\sqrt{3}}{2}\)
Gọi thể tích khối đa diện cần tính là \(V_1\)
\(\Rightarrow\dfrac{V_1}{V}=\dfrac{1}{3}\left(\dfrac{AA_1}{AD}+\dfrac{BB_1}{BE}+\dfrac{CC_1}{CC_1}\right)=\dfrac{5}{6}\)
\(\Rightarrow V_1=\dfrac{5}{6}V=...\)
Hình vẽ câu 17: