Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 5 cách đi từ A đến B. Đến B rồi, có 4 cách trở về A mà không đi qua con đường đã đi từ A đến B. Vậy có 5. 4 = 20 cách đi từ A đến B rồi trở về A mà không đường nào đi hai lần.
Đáp án : A
Để đi từ A đến C có 6 cách chọn con đường đi từ A đến B và 4 cách chọn con đường đi từ B đến C.
Để đi từ C về A có 3 cách chọn con đường đi từ C và B và có 5 cách chọn con đường đi từ B và A (Do không đi lại các con đường đã đi rồi)
Do đó theo quy tắc nhân có:6.4.2.5 = 240 cách.
Đáp án C.
Các cách đi: : cách.
: cách.
Vậy tất cả có 159 cách đi từ A đến D.
a) Để đi từ A đến D mà qua B và C chỉ một lần, phải thực hiện liên tiếp ba hành động sau đây:
Hành động 1: Đi từ A đến B. Có 4 cách để thực hiện hành động này.
Hành động 2: Đi từ B đến C. Có 2 cách để thực hiện hành động này.
Hành động 3: Đi từ C đến D. Có 3 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra số các cách để đi từ A đến D mà qua B và C chỉ một lần là 4 . 2 . 3 = 24 (cách).
b) ĐS: Số các cách để đi từ A đến D (mà qua B và C chỉ một lần), rồi quay lại A (mà qua C và B chỉ một lần) là:
(4 . 2 . 3) . (3 . 2 . 4) = 242 = 576 (cách).
Đáp án C
Số cách đi từ A đến B là 4, số cách đi từ B đến C là 2
số cách đi từ C đến D là 3.
Số cách đi từ A đến D mà qua B và C chỉ một lần là:
4.2.3 = 24(cách)
Từ A đến B có 4 cách.
Từ B đến C có 2 cách.
Từ C đến D có 2 cách.
Vậy theo qui tắc nhân ta có 4.2.3 = 24 cách.
Chọn đáp án D.
Việc đi từ A đến D là công việc được hoàn thành bởi ba hành động liên tiếp:
+ Đi từ A đến B: Có 4 con đường.
+ Đi từ B đến C: Có 2 con đường.
+ Đi từ C đến D: Có 3 con đường
⇒ Theo quy tắc nhân: Có 4.3.2 = 24 con đường đi từ A đến D mà chỉ đi qua B và C 1 lần.
Có \(5\cdot4=20\) cách đi từ A → B rồi trờ về A mà không có đường nào đi được 2 lần.