Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ sd phép quy nạp một chút, tui nhớ cái dãy trong căn có trong SGK nên CM lại thôi :b
\(1^3+2^3+...+n^3=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
Với n=1, mệnh đề có dạng \(1=\left[\dfrac{1\left(1+1\right)}{2}\right]^3\)
=>Mệnh đề đúng với n=1
Giả sử n=k đúng với \(\forall k\ge1\) , nghĩa là:
\(1^3+2^3+..+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Ta cần chứng mình mệnh đề cũng đúng với n=k+1, nghĩa là:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Vậy mệnh đề giả thiết đúng
\(lim\dfrac{\left(n+1\right).n\left(n+1\right)}{2.(3n^3+n+2)}=lim\dfrac{n^3}{6n^3}=\dfrac{1}{6}\)
Ta có đẳng thức: \(1^3+2^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
\(\Rightarrow\lim\left(u_n\right)=\lim\dfrac{\left(n+1\right).n\left(n+1\right)}{2\left(3n^3+n+2\right)}=\dfrac{\left(1+\dfrac{1}{n}\right).1.\left(1+\dfrac{1}{n}\right)}{2\left(3+\dfrac{1}{n^2}+\dfrac{2}{n^3}\right)}=\dfrac{1.1.1}{6}=\dfrac{1}{6}\)
\(0\le1+cosn^2\le2\Rightarrow0\le\dfrac{1+cosn^2}{1+2n}\le\dfrac{2}{1+2n}\)
Mà \(\lim\left(0\right)=\lim\left(\dfrac{2}{1+2n}\right)=0\)
\(\Rightarrow\lim\dfrac{1+cosn^2}{1+2n}=0\)
\(A=\lim\limits_{x\rightarrow-\infty}\dfrac{2a-\sqrt{1+\dfrac{3}{x}-\dfrac{1}{x^2}}}{3+\dfrac{5}{x}}=\dfrac{2a-1}{3}\)
Câu này thiếu -1 trên tử rồi :v
Tham khảo câu trả lời của mod Lâm Đọc bị lú rồi :D
a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)
d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)
Ta có :
\(1;4;9;16;..............\)
Số thứ 1 : \(1=1^2\)
Số thứ 2 : \(4=2^2\)
............................
Số thứ 100 : \(100^2=10000\)
Vậy số hạng thứ 100 của dãy trên là \(10000\)
ta đặt tuổi ông, cháu, bố lần lượt là a,b,c.
theo bài ta có: \(\dfrac{a+b}{2}=36\Leftrightarrow a+b=72\) (1)
lại có tuổi ông hơn tuổi cháu là 54 tuổi nên:
a-b=54 (2)
Từ (1) và(2) suy ra:b=6;a=60.
Mà tbc của tuổi bố và cháu là 23 nên ta có :
b+c=46⇔c=40. chúc bạn học tốt.