K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Chọn B

Lời giải.

Số phần tử của không gian mẫu là  Ω = 6 . 6 = 36

Gọi A là biến cố "Số chấm trên mặt hai lần gieo có tổng bằng 8".

Gọi số chấm trên mặt khi gieo lần một là x

số chấm trên mặt khi gieo lần hai là y

Theo bài ra, ta có

Khi đó số kết quả thuận lợi của biến cố là  Ω A = 5

Vậy xác suất cần tính P ( A ) = 5 36  

25 tháng 7 2018

Đáp án A. 

Xác suất một lần gieo được mặt một chấm là Xác suất để cả ba lần không gieo được mặt một chấm là Xác suất để có ít nhất một lần gieo được mặt một chấm trong ba lượt gieo là:

22 tháng 8 2023

a) Xác suất của biến cố B là \(\dfrac{1}{6}\), vì có 6 mặt trên xúc xắc và chỉ có duy nhất một mặt là mặt 6 chấm.

b)

+ Trong trường hợp biến cố A xảy ra, xác suất của biến cố B không thay đổi. Vì hai biến cố này là độc lập, kết quả của biến cố A không ảnh hưởng đến biến cố B.

+ Trong trường hợp biến cố A không xảy ra, tức là An không gieo được mặt 6 chấm, xác suất của biến cố B là \(\dfrac{1}{6}\)

$HaNa$

22 tháng 8 2023

Tham khảo:

a) \(B=\dfrac{1}{6}\)

b) Biến cố A xảy ra: \(B=\dfrac{1}{6}\)

 Biến cố A không xảy ra: \(B=\dfrac{1}{6}\)

NV
22 tháng 12 2022

Không gian mẫu: \(6.6=36\)

a.

Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)

Lần thứ 2 bất kì => có 6 khả năng

\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm

Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)

b.

Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

c.

Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp

Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)

Thầy có thể giải thích hơn về câu a và câu b của bài này được không ạ?

1 tháng 6 2019

Đáp án A

Số phần tử của không gian mẫu:  

Gọi A là biến cố mặt 6 chấm không xuất hiện.