Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)
\(PT:\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)
\(x-1=0\Leftrightarrow x=1\)
\(x-2=0\Leftrightarrow x=2\)
\(3x+2=0\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=2\\x=-\frac{2}{3}\end{cases}}\)
\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x+1\right)+2\left(x+1\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)
\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)
\(\Leftrightarrow2x^3-3x^2+3+x^2-4x+1=0\)
\(\Leftrightarrow3x^2-7x^2+4=0\)
\(\Leftrightarrow\left(3x^2-4x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x^2+2x-6x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(3x+2\right)-2\left(3x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\x=2\\x=1\end{cases}}\)
vậy:...
\(\frac{4x-1}{3}-\frac{2-x}{15}\le\frac{10x-3}{5}\)
\(\Rightarrow\frac{5\left(4x-1\right)}{15}-\frac{2-x}{15}-\frac{3\left(10x-3\right)}{15}\le0\)
\(\Rightarrow\frac{20x-5-2+x-30x+9}{15}\le0\)
\(\Rightarrow-9x+2\le0\)
\(\Rightarrow9x-2\ge0\)
\(\Rightarrow9x\ge2\)
\(\Rightarrow x\ge\frac{2}{9}\)
Lần này thì đúng rồi :
\(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{3}+\frac{x}{3}-\frac{1}{6}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{3}+\frac{x}{3}+\frac{x}{3}=4+\frac{1}{6}\)
\(\Leftrightarrow\frac{4x}{3}=\frac{25}{6}\)
\(\Leftrightarrow x=\frac{25}{8}\)
Ta có:
\(\frac{x^2-5x+1}{2x+1}+2=\frac{x^2-5x+4x+1+2}{2x+1}\)
=\(\frac{x^2-x+3}{2x+1}=\frac{x^2-4x+1}{x+1}\)
=> (x2 - x +3)(x+1)=(x2 - 4x+1)(2x+1)
=>x3 +2x+3=2x3-7x2-2x+1
=>0=x3-7x2-4x-2
Đây là cách làm của mình :
\(\Leftrightarrow\frac{x^2-5x+1}{2x+1}+1+1=\frac{x^2-4x+1}{x+1}\)
\(\Leftrightarrow\frac{x^2-5x+1}{2x+1}+1=\frac{x^2-4x+1}{x+1}-1\)
\(\Leftrightarrow\frac{x^2-3x+2}{2x+1}=\frac{x^2-5x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{2x+1}=\frac{x^2-5x}{x+1}\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=\left(2x+1\right)\left(x^2-5x\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=\left(2x+1\right)\left(x^2-5x\right)\)
Bạn tự nhân phân phối vào nha :
\(\Leftrightarrow x^3-2x^2-x+2=2x^3-9x^2-5x\)
\(\Leftrightarrow x^3-7x^2-4x-2=0\)
Đến đây chỉ có nước bấm máy tính thôi chứ phân tích bình thường không ra được đâu
CASIO fx-570VN PLUS : Mode --> 5 --> 4 : giải pt bậc 3 một ẩn
Kết quả cho là x = 7.563793497...
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
\(\frac{1-2x}{4}-2\ge\frac{1-x}{8}\)
\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}\ge\frac{1-x}{8}\)
\(\Leftrightarrow2\left(1-2x\right)-16\ge1-x\)
\(\Leftrightarrow2-4x-16\ge1-x\)
\(\Leftrightarrow x-4x\ge16+1-2\)
\(\Leftrightarrow-3x\ge15\)
\(\Leftrightarrow x\le-5\)
Vậy tập nghiệm của bất phương trình trên là:\(S=\left\{x|x\le-5\right\}\)
#hoktot<3#