Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
\(\Leftrightarrow-m^2+m+2mx-2=x^2-1\)
\(\Leftrightarrow x^2-1+m^2-m-2mx+2=0\)
\(\Leftrightarrow x^2-2mx+m^2-m+1=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m+1\right)\)
=4m-4
Để phương trình có hai nghiệm phân biệt thì 4m-4>0
hay m>1
Để phương trình có nghiệm kép thì 4m-4=0
hay m=1
Để phương trình vô nghiệm thì 4m-4<0
hay m<1
Phương trình đã cho tương đương với phương trình
(m - 1)(m + 3)x = 4(m - 1)
Với m ≠ 1 và m ≠ -3 phương trình có nghiệm
Với m = 1 mọi số thực x đều là nghiệm của phương trình;
Với m = -3 phương trình vô nghiệm.
\(2mx+3=m-x\)
\(\Leftrightarrow x\left(2m+1\right)=m-3\)
+) Nếu \(2m+1=0\) và \(m-3=0\) thì phương trình nghiệm đúng \(\forall x\)
Khi đó \(m=-\frac{1}{2}\) và \(m=3\) (vô lí)
+) Nếu \(2m+1=0\) và \(m-3\ne0\) thì phương trình vô nghiệm
Khi đó:\(m=-\frac{1}{2}\) và \(m\ne3\) (chọn) +) Nếu \(2m+1\ne0\) và \(m-3\ne0\) thì phương trình có nghiệm duy nhất \(x=\frac{m-3}{2m+1}\) Khi đó \(m\ne3\) và \(m\ne-\frac{1}{2}\)1. \(x+3m>3+mx.\Leftrightarrow x+3m-3-mx>0.\\ \Leftrightarrow\left(1-m\right)x+3m-3>0.\\ \Leftrightarrow\left(1-m\right)x>-3m+3.\left(1\right)\)
+) Nếu \(1-m=0.\Leftrightarrow m=1.\) Thay vào (1):
\(0x>-3.1+3.\Leftrightarrow0x>0\) (vô lý).
\(\Rightarrow\) Bất phương trình vô nghiệm.
+) Nếu \(1-m>0.\Leftrightarrow m< 1.\)
Khi đó (1) có nghiệm: \(x>\dfrac{-3m+3}{1-m}.\Leftrightarrow x>\dfrac{-3\left(m-1\right)}{-\left(m-1\right)}.\Leftrightarrow x>3.\)
+) Nếu \(1-m< 0.\Leftrightarrow m>1.\)
Khi đó (1) có nghiệm: \(x< \dfrac{-3m+3}{1-m}.\Leftrightarrow x< 3.\)
1/ x=3 , m=1
bl : tìm nghiệm , tạo khoảng thử nghiệm
2/ \(m=\pm\sqrt{-\dfrac{25-2x}{25-x}}\)
\(x=\dfrac{25\left(1+m^2\right)}{2+m^2}\)
3/ x=-m+1
m = \(\left\{{}\begin{matrix}3\\-x+1\end{matrix}\right.\)
4/ m= \(\left\{{}\begin{matrix}x-3\\3\end{matrix}\right.\)
x= m+3
\(PT\Leftrightarrow\left(m+1\right)x-3x=2m-1\\ \Leftrightarrow x\left(m-2\right)=2m-1\\ \Leftrightarrow x=\dfrac{2m-1}{m-2}\left(m\ne2\right)\)
+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm
a=0 va b=0 thi phuong trình có vô sô nghiệm
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn)
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0
<=> x(m^2-3m+2)-m^2+m=0 (2)
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất
x=m-m^2/m^2-3m+2 <=> x=m/m-2
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)
\(\Leftrightarrow-m^2+5m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)
=>m=2 hoặc ,=3
b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0
hay m<>-1
\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)
\(=4m^2-8m+4-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m+8\)
=-4m+12
Để phương trình có hai nghiệm phân biệt thì -4m+12>0
=>-4m>-12
hay m<3
Để phương trình có nghiệm kép thì -4m+12=0
hay m=3
Để phương trình vô nghiệm thì -4m+12<0
hay m>3