K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

Câu 1:

Kẻ BH⊥AC và DK⊥AC

Dễ thấy \(\Delta AHB\sim\Delta AEC;\Delta AKD\sim\Delta AFC\)

Do đó \(\dfrac{AB}{AC}=\dfrac{AH}{AE};\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AB\cdot AE=AC\cdot AH;AD\cdot AF=AC\cdot AK\)

\(\Leftrightarrow AB\cdot AE+AD\cdot AF=AC\left(AH+AK\right)=AC^2\left(A\right)\)

6 tháng 11 2021

Câu 2:

ABCD là htc nên \(AD=BC=AB\)

Ta có \(AD=AB=BC=\dfrac{BD}{\tan C}=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)

\(AH=AD\cdot\sin D=AD\cdot\sin C=2\sqrt{3}\cdot\sin60^0=3\left(cm\right)\)

\(DH=AD\cdot\cos D=\sqrt{3}\left(cm\right)\)

Áp dụng Talet: \(\dfrac{AI}{IH}=\dfrac{DH}{AB}=\dfrac{\sqrt{3}}{2\sqrt{3}}=\dfrac{1}{2}\Leftrightarrow AI=2IH\)

Mà \(AI+IH=AH=3\Leftrightarrow3IH=3\Leftrightarrow IH=1\Leftrightarrow AI=2\left(cm\right)\left(A\right)\)

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0

a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)

nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:

\(AC\cdot AD=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\)(2)

Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=EF(hai đường chéo)