Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\)
+) \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}\)(1)
+) \(\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{y}{48}=\frac{z}{66}\)(2)
Từ (1) và (2) => \(\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{66}=\frac{x+y-z}{40+48-66}=\frac{44}{22}=2\)
=> \(\hept{\begin{cases}\frac{x}{40}=2\\\frac{y}{48}=2\\\frac{z}{66}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=80\\y=96\\z=132\end{cases}}\)
Lại có : A = x - y - 2z = 80 - 96 - 2.132 = -280
Vậy A = -280
Ta chia trên trục số thành các khoảng:từ 0 đến không quá 1;từ 1 đến ko quá 2;từ 2 đến nhỏ hơn 3
Hiển nhiên 7 số An viết đều nằm trong khoảng này ,Nhưng vì 7=3.2+1
=>sẽ có 1 khoảng chứa ít nhất 3 số (theo nguyên lí Đi-rich-lê)
Gọi 3 số này là a;b;c (a<b<c)
Khi đó (c-a)(c-b)<1
=>c(c-b)-a(c-b)<1
=>c2-bc-ac+ab<1
=>c2-ac-bc+ab<1
=>c2+ab<ac+bc+1
=>đpcm
Xét tam giác AMN và CDN có
ND=MN(gt)
AN=NC(vì N là trung điểm của AC)
góc ANM=DNC (đối đỉnh)
=>tam giác AMN=CDN
=>CD=AM
mà AM=MB
=>CD=MB
câu b
Vì N là trung điểm của AC
M là tđ của AB
=>MN là đường trung bình của tam giác ABC
=>MN//BC và MN=1/2 BC
a^2+(a+)^2=a^2+(a+1)(a+1)=a^2+a.a+a.1+1.a+1.1=a^2+a^2+2a+1
đúng 100%
dễ mà tính rồi phá ngoặc ra