Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(2x-1\right)^2+\left(x+4\right)^2+5=2x\left(x+1\right)+\left(x+2\right)^2+2x^2-2x+18\)
\(\Leftrightarrow4x^2-4x+1+x^2+8x+16+5=2x^2+2x+x^2+4x+4+2x^2-2x+18\)
\(\Leftrightarrow5x^2+4x+22=5x^2+4x+22\)
=> PT có vô số nghiệm
b ) \(\dfrac{5x-7}{4}-\dfrac{9x-4}{5}=-x-\dfrac{19-9x}{20}\)
\(\Leftrightarrow\dfrac{25x-35-36x+16}{20}=\dfrac{-20x-19+9x}{20}\)
\(\Leftrightarrow\dfrac{-11x-19}{20}=\dfrac{-11x-19}{20}\)
=> PT có vô số nghiệm
c ) \(\left|y-3\right|=y-3\)
TH 1 : \(y\ge3\)
\(\Rightarrow y-3\ge0\Rightarrow\left|y-3\right|=y-3\)
Do \(\left|y-3\right|=y-3\)
\(\Rightarrow y-3=y-3\)
Nên : \(y\ge3\) , PT vô số nghiệm
TH 2 : \(y< 3\Rightarrow y-3< 0\Rightarrow\left|y-3\right|=3-y\)
Do \(\left|y-3\right|=y-3\)
\(\Rightarrow3-y=y-3\)
\(\Rightarrow3-y-y+3=0\)
\(\Rightarrow6-2y=0\)
\(\Rightarrow y=3\) ( L ; do y < 3 )
Vậy \(y\ge3\) thì PT vô số nghiệm
1: =>2x-5=4 hoặc 2x-5=-4
=>2x=9 hoặc 2x=1
=>x=9/2hoặc x=1/2
2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)
3: \(\Leftrightarrow\left|5x-3\right|=x+5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)
a.x-\(\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
⇔\(x=\dfrac{7-3x}{4}+\dfrac{5x+2}{6}\)
⇔\(x=\dfrac{21-9x+10x+4}{12}\)
⇔x=\(\dfrac{x+25}{12}\)
⇔12x=x+25
⇔x=\(\dfrac{25}{11}\)
Vậy pt đã cho có n0 là S=\(\left\{\dfrac{25}{11}\right\}\)
b.ĐKXĐ:x≠-2;x≠2
\(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
⇔\(\dfrac{\left(x-2\right)\cdot\left(x-2\right)-3\cdot\left(x+2\right)}{\left(x-2\right)\cdot\left(x+2\right)}\)=\(\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇔\(\dfrac{x^2-7x-2}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇒\(\left(x^2-7x-2\right)\cdot\left(x-2\right)\cdot\left(x+2\right)=\left(2x-22\right)\cdot\left(x-2\right)\cdot\left(x+2\right)\)
⇔x2-7x-2=2x-22
⇔x2-9x+20=0
⇔(x-4)(x-5)=0
⇔\(\left\{{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy pt đã cho có n0 là S={4;5}
Phân thức: \(\dfrac{2x}{2x-2}\)
ĐKXĐ: \(x\ne1\)
Phân thức: \(\dfrac{1}{x^2-2x+1}=\dfrac{1}{\left(x-1\right)^2}\)
ĐKXĐ: \(x\ne1\)
Phân thức: \(\dfrac{5x^3}{\left(x-1\right)\left(x^2+1\right)}\)
ĐKXĐ: \(x\ne1\)
Vậy các phân thức : \(\dfrac{2x}{2x-2};\dfrac{1}{x^2-2x+1};\dfrac{5x^3}{\left(x-1\right)\left(x^2+1\right)}\)
có cùng điều kiện của biến x là \(x\ne1\)
\(2x-2\ne0\) khi \(x\ne1;x^2-2x+1=\left(x-1\right)^2\ne0\) khi \(x\ne1,\left(x-1\right)\left(x^2+1\right)\ne0\) khi \(x\ne1\). Vậy biến \(x\) trong ba phân thức này có cùng một điều kiện \(x\ne1\) là đúng.
\(\dfrac{-5x+7-2x+3-3x+4}{2-x}=\dfrac{-10x+14}{2-x}=\dfrac{-2\left(5x-7\right)}{2-x}=\dfrac{2\left(5x-7\right)}{x-2}.\)