Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha!
Vì PQ=PR suy ra tg PQR cân tại P
suy ra : góc PQR=180−P2180−P2(180 độ, góc P)(1)
Ta có PQ=PR và PM=PN(gt)
vì PM=PN suy ra tg PMN cân tại P
suy ra : góc PMN=180−P2180−P2(2)
Từ (1),(2) ta có :góc PQR= góc PMN
mà 2 góc ở vị trí đồng vị suy ra MN // QR
suy ra QMNR là hình thang (3)
Vì PQ=PR và PM=PN
suy ra PQ-PM = PR-PN
suy ra MQ=NR(4)
TỪ (3) (4) suy ra QMNR là hình thang cân.
Đúng rùi anh, đọc cái đề không biết dễ hay khó nhưng nhìn vào nản không muốn làm. Hì
Xét ΔMDP vuông tại D có
\(MP^2=MD^2+DP^2\)
hay DP=4(cm)
Xét ΔMPQ vuông tại M có MD là đường cao ứng với cạnh huyền QP, ta được:
\(MP^2=DP\cdot QP\)
hay QP=6,25(cm)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)
nên \(\widehat{B}\simeq23^0\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}\simeq90^0-23^0=67^0\)
b: Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-40^0=50^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2\)
=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)