K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

\(x^2+2x\sqrt{x+\dfrac{1}{x}}=8x-1\left(x\ne0\right)\)

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{1}{8}\)

Vì \(x\ne0\Rightarrow\) chia 2 vế cho x,ta được:

\(x+2\sqrt{x+\dfrac{1}{x}}=8-\dfrac{1}{x}\Rightarrow x+\dfrac{1}{x}+2\sqrt{x+\dfrac{1}{x}}=8\)

Đặt \(\sqrt{x+\dfrac{1}{x}}=a\left(a>0\right)\)

pt trở thành \(a^2+2a-8=0\Rightarrow a^2-2a+4a-8=0\)

\(\Rightarrow a\left(a-2\right)+4\left(a-2\right)=0\Rightarrow\left(a-2\right)\left(a+4\right)=0\)

mà \(a>0\Rightarrow a=2\Rightarrow\sqrt{x+\dfrac{1}{x}}=2\Rightarrow x+\dfrac{1}{x}=4\)

\(\Rightarrow\dfrac{x^2-4x+1}{x}=0\Rightarrow x^2-4x+1=0\)

\(\Delta=\left(-4\right)^2-4=12\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x-\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{2-\sqrt{3};2+\sqrt{3}\right\}\)

 

21 tháng 6 2021

Cho mình hỏi sao VT lại lớn hơn 0 vậy ạ?

18 tháng 8 2017

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)

\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)

\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)

\(\Rightarrow m\ge4\) thì pt trên có no

18 tháng 8 2017

cảm ơn bạn.

23 tháng 9 2021

ĐK: `{(2x^2+8x+6>=0),(x^2-1>=0),(2x+2>=0):} <=> {(x=-1),(x>=1):}`

`\sqrt(2x^2+8x+6)+\sqrt(x^2-1)=2x+2`

`<=>(2x^2+8x+6)+(x^2-1)+2\sqrt((2x^2+8x+6)(x^2-1))=(2x+2)^2`

`<=>2(x+3)(x+1)+(x-1)(x+2)+2\sqrt((x+1)^2 (x+3)(x-1))=4(x+1)^2`

`<=> (x+1)[2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0`

`<=> [(x=-1\ (TM)),([2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0\ (1)):}`

(1) `<=> x-1=2\sqrt((x+3)(x-1))`

`<=>x^2-2x+1=4(x+3)(x-1)`

`<=>x=1\ `(TM)

Vậy `S={\pm 1}`.

23 tháng 9 2021

\(ĐK:x\le-3;x\ge-1\)

\(PT\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\left(x+3\right)+\left(x-1\right)+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\\ \Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\\ \Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{25}{7}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)

Vậy \(S=\left\{-1;1\right\}\)

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

22 tháng 4 2023

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

22 tháng 4 2023

Không=))

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

13 tháng 2 2022

\(\left(x\ne-y;x>\dfrac{y}{2}\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-\left(x+y\right)}{x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7}{x+y}=2\end{matrix}\right.\)

\(đặt:\dfrac{1}{\sqrt{2x-y}}=a>0;\dfrac{1}{x+y}=b\)

\(\Rightarrow\left\{{}\begin{matrix}4a-21b=\dfrac{1}{2}\\3a+7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\left(tm\right)\\b=\dfrac{1}{14}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-y}}=\dfrac{1}{2}\\\dfrac{1}{x+y}=\dfrac{1}{14}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)(thỏa)