Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
Ta có: \(P=\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)\(=\dfrac{3\sqrt{x}-6+\sqrt{x}+x-5\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)^2}\)
a) \(\sqrt{2x-1}=3\left(đk:x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Leftrightarrow x=5\)(thỏa đk)
b) \(\sqrt{1-3x}=\dfrac{1}{2}\left(đk:x\le\dfrac{1}{3}\right)\)
\(\Leftrightarrow1-3x=\dfrac{1}{4}\Leftrightarrow3x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)(thỏa đk)
c) \(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=-\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left|1+2x\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}1+2x=\dfrac{\sqrt{3}}{2}\\1+2x=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{3}}{4}\\x=-\dfrac{2+\sqrt{3}}{4}\end{matrix}\right.\)
e) \(\sqrt{\left(1-2x\right)^2}=\left|x-1\right|\)
\(\Leftrightarrow\left|1-2x\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=x-1\\1-2x=1-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=0\end{matrix}\right.\)