K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

đk : \(x\ge1\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( ví \(x\ge1>0\))

\(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))

\(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)( ta có thể lập pt 2 vế )

\(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)

\(\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)

\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))

Vậy nghiệm của pt là \(x=\frac{1+\sqrt{5}}{2}\)

23 tháng 11 2018

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

9 tháng 5 2018

Đk \(x\ge1\)

Áp dụng bđt cosi có

\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)

\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)

\(\Rightarrow VT\le VP\)

Dấu = xay ra khi.........\(x=\frac{1+\sqrt{5}}{2}\)(do \(x\ge1\))

24 tháng 1 2021

*ĐK* : \(\hept{\begin{cases}x\ne0\\x-\frac{1}{2}\ge0\\1-\frac{1}{x}\ge0\end{cases}\Leftrightarrow x\ge1}\)(1)

             \(x\ge0\)( điều kiện cần )

\(\left(1\right)\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)

         \(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)

          \(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)

          \(\Leftrightarrow\sqrt{x}.\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( vì \(x\ge1>0\))

          \(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))

          \(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)

          \(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)

          \(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)

          \(\Leftrightarrow x^2-x-x=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)

          \(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))

Vậy nghiệm của PT trên là \(x=\frac{1+\sqrt{5}}{2}\)

14 tháng 6 2016

hình như đề sai, ra nghiệm lẻ quá

14 tháng 6 2016

cái đề của bà cũng lẻ tui nói sai đề bà có sửa đâu

8 tháng 10 2015

ĐK : .... 

pt <=> \(\sqrt{\frac{x^2-1}{x}}-\sqrt{\frac{x-1}{x}}=\frac{x-1}{x}\)

Đặt \(\sqrt{x+1}=a;\sqrt{\frac{x-1}{x}}=b\)

pt <=> \(ab-b=b^2\Leftrightarrow b^2+b-ab=0\Leftrightarrow b\left(b+1-a\right)=0\)

=> b = 0 hoặc \(b+1-a=0\)

(+) với b = 0  => \(\sqrt{\frac{x-1}{x}}=0\Leftrightarrow\frac{x-1}{x}=0\Rightarrow x=1\)

(+) với \(b-a+1=0\) cô Loan giải rồi nha 

7 tháng 10 2015

cái ông này, tui lm đến đó thui, ko rảnh nha

8 tháng 9 2015

bn thích exo ak, mk cx z nè, phải nói là rất rất thích nữa chứ

\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\sqrt{\left(x-2\right)\cdot\left(x+3\right)}=\sqrt{\left(x+1\right)\cdot\left(x-1\right)}\)

x2 + 3x - 2x - 6 = x2 - 1

x2 - x2 + x = - 1 + 6

x = 5

6 tháng 8 2017

Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)

√a+√(1/a)=7/4;Bình phương 2 vế suy ra:

a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)

Vậy phương trình vô nghiệm