\(x=\sqrt{3-x}\cdot\sqrt{4-x}+\sqrt{4-x}\cdot\sqrt{5-x}+\sqrt{5-x}\cdot\sqrt{3-x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Thấy bài này hơi muộn nên h mới làm 😊☺️

Chương 1: MỆNH ĐỀ, TẬP HỢP

ĐKXĐ: \(\left\{{}\begin{matrix}1+3x>=0\\1-3x>=0\\x< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}< =x< =\dfrac{1}{3}\\x< >0\end{matrix}\right.\)

26 tháng 12 2017

bài này bạn chỉ việc đặt ẩn phụ

\(\sqrt{3+x}làa\)

\(\sqrt{6-x}làb\)

ta có \(a^2+b^2=9\)

và thay a,b vào phương trình ban đầu ta có

a+b=3+ab

bạn giải hệ phương trình tìm được a,b

tìm được a,b là tìm được x rồi

nhớ là a,b luôn lớn hơn hoặc bằng không nên trường hợp nào a,b ra âm thì loại luôn nha bạn đỡ phải mất công giải

mặc dù bài này giải cũng khá dài nhưng không phức tạp lắm

chúc bạn thành công

28 tháng 12 2017

Đặt \(t=\sqrt{3+x}+\sqrt{6-x}\Leftrightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{t^2-9}{2}\)

pt \(\Leftrightarrow t=3+\dfrac{t^2-9}{2}\Leftrightarrow2t=6+t^2-9\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\left(nh\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{3^2-9}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)

NV
2 tháng 10 2019

a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)

\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)

\(\Rightarrow x=-1\)

b/

\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)

\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)

\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)

\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)

\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra

NV
2 tháng 10 2019

c/ ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)

d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?

e/ ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)

\(\Leftrightarrow\sqrt{x+3}+1=x+4\)

\(\Leftrightarrow x+3-\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)