Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x5+x-1=0
<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0
<=>(x4+x3+x2+x+1)(x-1)=0
Do x4+x3+x2+x+1>0
=>x+1=0
<=>x=1
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(x^2-6x+9=4.\sqrt{x^2-6x+6}\)\(ĐK:x^2-6x+6\ge0\)
Đặt \(\sqrt{x^2-6x+6}=t\)\(\left(ĐK:t\ge0\right)\)
\(\Leftrightarrow t^2=x^2-6x+6\)
\(\Leftrightarrow x^2-6x=t-6\)thay vào pt ta được :
\(\Leftrightarrow t^2-6+9=4t\)
\(\Leftrightarrow t^2-4t+3=0\)\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)
Với \(t=1\Rightarrow\sqrt{x^2-6x+6}=1\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=5\left(TM\right)\end{cases}}\)
Với \(t=3\Rightarrow\sqrt{x^2-6x+6}=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(TM\right)\end{cases}}\)
a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)
b. \(\Leftrightarrow x^3+x+3x^2+3=0\)
\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)
d.
\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)
e.
\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)
(x-4)(x-5)(x-8)(x-10)=72x^2
<=> (x-4)(x-10)(x-5)(x-8)=72x^2
<=> (x^2-14x+40)(x^2-13x+40)=72x^2
x=0 không là nghiệm của pt chia 2 vế cho x^2 ta được
<=>(x-14+40/x)(x-13+40/x)=72
đặt y=x+40/x
pt trở thành: (y-14)(y-13)=72
<=> y^2-27y+110=0giải pt=> y=22,y=5
thế y vào x+40/dta đuoc
th1x+40/x=22 giải pt=> x=20 hoặc x=2
th2x+40/x=2 giải pt => pt vô nghiệm
S={20;2}
|x - 8|5 + |x - 9|6 = 1 (1)
Ta thấy x = 8 và x = 9 là nghiệm của (1)
Như vậy ta chỉ còn lại 3 trường hợp: x < 8; x > 9 và 8 < x < 9
+) Nếu x < 8 thì |x - 9| > 1 => |x - 9|6 > 1
Lại có: |x - 8|5 > 0 do x < 8
Nên VT của (1) lớn hơn 1, (1) vô nghiệm
+ Nếu x > 9 thì |x - 8| > 1 => |x - 8|5 > 1
Lại có: |x - 9|6 > 0 do x > 9
Nên VT của (1) lớn hơn 1, (1) vô nghiệm
+ Nếu 8 < x < 9 thì:
0 < |x - 8| < 1 => |x - 8|5 < |x - 8| = x - 8
0 < |9 - x| < 1 => |x - 9|5 = |9 - x|5 < |9 - x| = 9 - x
Như vậy, VT của (1) nhỏ hơn x - 8 + 9 - x = 1, (1) vô nghiệm
Vậy ...