K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Giải:

Đặt \(y=b\sqrt{1-x}\)

Ta có: \(\sqrt{a+y}=1+\sqrt{a-y}\)

\(\Leftrightarrow\sqrt{a+y}-\sqrt{a-y}=1\)

\(\Leftrightarrow\left(\sqrt{a+y}-\sqrt{a-y}\right)^2=1\)

\(\Leftrightarrow a+y-2\cdot\sqrt{a+y}\cdot\sqrt{a-y}+a-y=1\)

\(\Leftrightarrow2a-2\sqrt{a^2-y^2}=1\)

\(\Leftrightarrow2\sqrt{a^2-y^2}=2a-1\)

\(\Leftrightarrow\sqrt{a^2-y^2}=\dfrac{2\left(a-\dfrac{1}{2}\right)}{2}=a-\dfrac{1}{2}\)

\(\Leftrightarrow a^2-y^2=\left(a-\dfrac{1}{2}\right)^2=a^2-a+\dfrac{1}{4}\)

\(\Leftrightarrow y^2=a-\dfrac{1}{4}\)

\(\Leftrightarrow y=\sqrt{a-\dfrac{1}{4}}\)

\(\Leftrightarrow b\sqrt{1-x}=\sqrt{a-\dfrac{1}{4}}\)

\(\Leftrightarrow\sqrt{1-x}=\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\)

\(\Leftrightarrow1-x=\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)

\(\Leftrightarrow x=1-\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)

Vậy....................

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x>1$

\(B=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}=x+\sqrt{x^2-1}\)

b.

\(B=\frac{a^2+b^2}{2ab}+\sqrt{\frac{a^2+2ab+b^2}{2ab}.\frac{a^2-2ab+b^2}{2ab}}\)

\(=\frac{a^2+b^2}{2ab}+\sqrt{\frac{(a+b)^2(a-b)^2}{(2ab)^2}}=\frac{a^2+b^2}{2ab}+\frac{|a-b||a+b|}{|2ab|}=\frac{a^2+b^2}{2ab}+\frac{a^2-b^2}{2ab}=\frac{a}{b}\)

c.

$B\leq 1\Leftrightarrow (x-1)+\sqrt{x^2-1}\leq 0$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}+\sqrt{x+1})\leq 0$

$\Leftrightarrow \sqrt{x-1}\leq 0$

Mà $\sqrt{x-1}>0$ với mọi $x<1$ nên điều này vô lý)

Vậy không tồn tại $x$ thỏa đkđb

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

d.

$B=2\Leftrightarrow x+\sqrt{x^2-1}=2$

$\Leftrightarrow \sqrt{x^2-1}=2-x$

\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2-1=(2-x)^2=x^2-4x+4\end{matrix}\right.\)

\(\Rightarrow x=\frac{5}{4}\)

Thử lại thấy thỏa mãn

Vậy......

 

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

21 tháng 11 2019

Mình cũng đang tìm câu hỏi như vậy. Ai biết làm giúp với

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_

22 tháng 5 2019

a) \(x^2-|x|-6=0\)(1)

Với \(x\ge0\)=> \(|x|=x\) 

Phương trình trở thành

\(x^2-x-6=0\)

\(\left(a=1,b=-1,c=-6\right)\)

\(\Delta=b^2-4ac=\left(-1\right)^2-4\cdot1\cdot\left(-6\right)=1+24=25>0\)

=>\(\sqrt{\Delta}=\sqrt{25}=5\)

=> Phương trình có 2 nghiệm

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-1\right)+5}{2\cdot1}=3\)(thỏa)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-1\right)-5}{2\cdot1}=-2\)(loại)

Với \(x< 0\)=> \(|x|=-x\) 

Phương trình trở thành

\(-x^2+x-6=0\)

\(\left(a=-1,b=1,c=-6\right)\)

\(\Delta=b^2-4ac=1^2-4\cdot\left(-1\right)\cdot\left(-6\right)=1-24=-23< 0\)

=> Phương trình vô nghiệm

Vậy nghiệm của phuong trình (1) là x=3

NV
26 tháng 9 2020

a/ ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)

Đặt \(\sqrt{x^2+x+1}=t>0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+1}=1\)

\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)