Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)
=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi
=>x=pi/8+kpi hoặc x=-pi/8+kpi
b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)
=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi
=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi
=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi
d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)
=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi
=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi
=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2
e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)
=>x-pi/3=kpi
=>x=kpi+pi/3
a/
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)
\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)
\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)
\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)
c.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)
\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)
d.
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
a.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)
\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)
\(tan\cdot\left(x+\dfrac{\pi}{4}\right)+cot\cdot\left(2x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=-cot\cdot\left(2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=cot\cdot\left(-2x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{2}+2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{6}+2x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+2x+k\pi\)
\(\Leftrightarrow-x=\dfrac{-\pi}{12}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}-k\pi\left(k\in Z\right)\)
ĐK: \(x\ne\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)
\(tan\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow2x-\dfrac{\pi}{3}=arctan\left(-\dfrac{1}{2}\right)+k\pi\)
\(\Leftrightarrow2x=\dfrac{\pi}{3}+arctan\left(-\dfrac{1}{2}\right)+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{1}{2}arctan\left(-\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\in\left(0;\pi\right)\)
...
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
\(DKXD:\left\{{}\begin{matrix}\cos\left(2x+\frac{\pi}{8}\right)\ne0\\\sin\left(x-\frac{3\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\frac{\pi}{8}\ne\frac{\pi}{2}+k\pi\\x-\frac{3\pi}{4}\ne k\pi\end{matrix}\right.\)
\(pt\Leftrightarrow\tan\left(2x+\frac{\pi}{8}\right)=-\cot\left(x-\frac{3\pi}{4}\right)=\tan\left(x-\frac{3\pi}{4}+\frac{\pi}{2}\right)\)
\(\Leftrightarrow2x+\frac{\pi}{8}=x-\frac{3\pi}{4}+\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=-\frac{3}{8}\pi+k\pi\)