K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2019

a/ ĐKXĐ: \(-2\le x\le5\)

\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(x+2\right)\left(5-x\right)}-4=0\)

Đặt \(\sqrt{x+2}+\sqrt{5-x}=a>0\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}\)

\(\Rightarrow a+\frac{a^2-7}{2}-4=0\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}=1\)

\(\Leftrightarrow-x^2+3x+10=1\)

\(\Leftrightarrow x^2-3x-9=0\)

b/ \(\Leftrightarrow\sqrt{x+1}-\sqrt{4-x}+2\left(5+2\sqrt{\left(x+1\right)\left(4-x\right)}\right)=17\)

Đặt \(\sqrt{x+1}-\sqrt{4-x}=a\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{5-a^2}{2}\)

\(a+2\left(5+5-a^2\right)=17\)

\(\Leftrightarrow-2a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}-\sqrt{4-x}=-1\\\sqrt{x+1}-\sqrt{4-x}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+1=\sqrt{4-x}\\2\sqrt{x+1}=2\sqrt{4-x}+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2+2\sqrt{x+1}=4-x\\4x+4=25-4x+12\sqrt{4-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1-x\left(x\le1\right)\\12\sqrt{4-x}=8x-21\left(x\ge\frac{21}{8}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\left(1-x\right)^2\\144\left(4-x\right)=\left(8x-21\right)^2\end{matrix}\right.\)

NV
24 tháng 11 2019

c/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

\(a^2-1=3\left(a-1\right)\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-x^2}=\frac{a^2-1}{2}=0\\\sqrt{x-x^2}=\frac{a^2-1}{2}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-x^2=0\\x-x^2=\frac{9}{4}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5+2x}=a\ge0\\\sqrt{5-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}\left(3a-1\right)\left(3b-1\right)=16\\a^2+b^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3ab-\left(a+b\right)=5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3ab-5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\)

\(\Rightarrow\left(3ab-5\right)^2-2ab=10\)

\(\Leftrightarrow9\left(ab\right)^2-32ab+15=0\Rightarrow\left[{}\begin{matrix}ab=3\\ab=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(ab\right)^2=9\\\left(ab\right)^2=\frac{25}{81}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}25-4x^2=9\\25-4x^2=\frac{25}{81}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=\frac{500}{81}\end{matrix}\right.\)

27 tháng 11 2021

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

NV
25 tháng 11 2019

a/ ĐKXĐ: \(-2\le x\le2\)

Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)

\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)

\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)

Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc

NV
25 tháng 11 2019

b/ ĐKXĐ: \(-2\le x\le2\)

\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)

\(\Rightarrow\left(a^2+4\right)a-5=0\)

\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)

\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)

Vậy pt vô nghiệm

Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:

\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)

\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)

\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm

26 tháng 1 2018

Bài 1 :

Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+)

Dễ thấy f(x) > 0

f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)

= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)

Và f(1) = 1

Vậy f(x) có tập giá trị là (0;1]

* Nếu m \(\ge1\) thì bpt vô nghiệm

* Nếu m < 1 thì bpt có nghiệm

Vậy tập hợp m thỏa mãn là (0;1)

(0;1)

7 tháng 2 2018

ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau

27 tháng 12 2017

\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

\(\Leftrightarrow\dfrac{x^2+\sqrt{\left(x+3\right)\left(x+1\right)}}{\sqrt{x+3}+\sqrt{x+1}}=x\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x-\sqrt{x+3}\right)=0\)