Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết sao bạn cho thêm \(x\in Z\) vào cuối câu nhỉ? Giải pt nghiệm nguyên lai pt vô tỉ à :v
Bài làm :
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}+6=3\sqrt{x+1}+2\sqrt{x+2}+2\sqrt{x-1}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x-1}=b\\\sqrt{x+2}=c\end{matrix}\right.\)
\(pt\Leftrightarrow ac+ab+6=3a+2b+2c\)
\(\Leftrightarrow ac+ab+6-3a-2b-2c=0\)
\(\Leftrightarrow c\left(a-2\right)+b\left(a-2\right)-3\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(b+c-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\b+c=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x-1}+\sqrt{x+2}=3\end{matrix}\right.\)
+) TH1: \(\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\) ( thỏa )
+) TH2: \(\sqrt{x-1}+\sqrt{x+2}=3\)
\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}=8-2x\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=4-x\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=\left(4-x\right)^2\)
\(\Leftrightarrow x^2+x-2=x^2-8x+16\)
\(\Leftrightarrow9x=18\)
\(\Leftrightarrow x=2\) ( thỏa )
Vậy \(x\in\left\{2;3\right\}\).
Bài 1:
ĐKXĐ: $-2\leq x\leq 2$
Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$
Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)
\(\Rightarrow (2-ab)^2-2ab=4\)
\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)
Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$
$\Rightarrow x=2$
Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)
Vậy $x=2$
Bài 2:
ĐK: $x\geq \frac{-1}{3}
PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)
\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)
Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$
Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$
$\Rightarrow x+3=4(3x+1)$
$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)
Vậy..........
\(Dat:\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x+2}=b\end{matrix}\right.\Rightarrow a+b=1+ab\Rightarrow ab-a-b+1=a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)