K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

16 tháng 8 2019

Không biết sao bạn cho thêm \(x\in Z\) vào cuối câu nhỉ? Giải pt nghiệm nguyên lai pt vô tỉ à :v

Bài làm :

\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}+6=3\sqrt{x+1}+2\sqrt{x+2}+2\sqrt{x-1}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x-1}=b\\\sqrt{x+2}=c\end{matrix}\right.\)

\(pt\Leftrightarrow ac+ab+6=3a+2b+2c\)

\(\Leftrightarrow ac+ab+6-3a-2b-2c=0\)

\(\Leftrightarrow c\left(a-2\right)+b\left(a-2\right)-3\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b+c-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\b+c=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x-1}+\sqrt{x+2}=3\end{matrix}\right.\)

+) TH1: \(\sqrt{x+1}=2\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\) ( thỏa )

+) TH2: \(\sqrt{x-1}+\sqrt{x+2}=3\)

\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}=8-2x\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=4-x\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=\left(4-x\right)^2\)

\(\Leftrightarrow x^2+x-2=x^2-8x+16\)

\(\Leftrightarrow9x=18\)

\(\Leftrightarrow x=2\) ( thỏa )

Vậy \(x\in\left\{2;3\right\}\).

16 tháng 8 2019

ghê à nha, em tính liên hợp nhưng thôi, thấy anh làm r:)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 1:

ĐKXĐ: $-2\leq x\leq 2$

Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$

Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)

\(\Rightarrow (2-ab)^2-2ab=4\)

\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)

Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$

$\Rightarrow x=2$

Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)

Vậy $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 2:

ĐK: $x\geq \frac{-1}{3}

PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)

\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)

Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$

Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$

$\Rightarrow x+3=4(3x+1)$

$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)

Vậy..........

30 tháng 5 2017

\(PT\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)

12 tháng 8 2019

\(Dat:\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x+2}=b\end{matrix}\right.\Rightarrow a+b=1+ab\Rightarrow ab-a-b+1=a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)