Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge-1\)
\(2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Rightarrow x=3\)
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)
Ta có \(VT\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(1\le\sqrt{x-1}\le2\Rightarrow2\le x\le5\)
Vậy nghiệm của pt là \(2\le x\le5\)
c/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
- Với \(\sqrt{x-1}\ge1\Rightarrow x\ge2\) ta có:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\) (luôn đúng)
- Với \(1\le x< 2\) ta có:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\Rightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
d/ ĐKXĐ: \(-\le x\le1\)
\(\Leftrightarrow\sqrt{5-4x^2+4\sqrt{1-x^2}}+\sqrt{5-4x^2-4\sqrt{1-x^2}}=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2+2\sqrt{4-4x^2}+1}+\sqrt{4-4x^2-2\sqrt{4-4x^2}+1}=2x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{4-4x^2}+1\right)^2}+\sqrt{\left(\sqrt{4-4x^2}-1\right)^2}=2x+2\)
\(\Leftrightarrow\left|\sqrt{4-4x^2}+1\right|+\left|\sqrt{4-4x^2}-1\right|=2x+2\)
TH1: \(\sqrt{4-4x^2}\ge1\Rightarrow-\frac{\sqrt{3}}{2}\le x\le\frac{\sqrt{3}}{2}\) ta có:
\(\sqrt{4-4x^2}+1+\sqrt{4-4x^2}-1=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2}=x+1\)
\(\Leftrightarrow4-4x^2=x^2+2x+1\)
\(\Leftrightarrow5x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{5}\end{matrix}\right.\)
TH2: \(\left[{}\begin{matrix}-1\le x< -\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}< x\le1\end{matrix}\right.\) ta có:
\(\sqrt{4-4x^2}+1+1-\sqrt{4-4x^2}=2x+2\)
\(\Leftrightarrow2x=0\Rightarrow x=0\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=\frac{3}{5}\)
- Co :\(\sqrt{x^2+x-1}=2-x\) (\(x\le\frac{-1-\sqrt{5}}{2}\);\(\frac{-1+\sqrt{5}}{2}\le x\le2\))
\(\Leftrightarrow x^2+x-1=4-4x+x^2\)
\(\Leftrightarrow5x=5\)
\(\Leftrightarrow x=1\) (thoa man DKXD ) 2 .\(\sqrt{22-x}+\sqrt{x-20}=2\) (\(20\le x\le22\))
Xet VT :\(\left(\sqrt{22-x}+\sqrt{x-20}\right)^2\le2\left(22-x+x-20\right)=4\) \(\Leftrightarrow\sqrt{22-x}+\sqrt{x-20}\le2\) \(\Rightarrow\)de thoa man PT \(\Leftrightarrow VT=VP=2\)
\(\Leftrightarrow\sqrt{22-x}=\sqrt{x-20}\) \(\Leftrightarrow22-x=x-20\) \(\Leftrightarrow x=21\left(thoamanDKXD\right)\)
a/ ĐKXĐ: \(-2\le x\le2\)
Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)
\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)
\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)
Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc
b/ ĐKXĐ: \(-2\le x\le2\)
\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
\(\Rightarrow\left(a^2+4\right)a-5=0\)
\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)
\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)
Vậy pt vô nghiệm
Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:
\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)
\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)
\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:
\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
c/ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
ở căn đầu tiên: x^2 - 2002x + 2001